Late dropout is one of the most pressing challenges currently facing higher education, and the process that each student follows to arrive at that decision usually involves several academic periods. This work presents a curricular analytics approach at the program level, to analyze how educational trajectories of undergraduate students in high-failure rate courses help to describe the process that leads to late dropout. Educational trajectories (n = 10,969) of high-failure rate courses are created using Process Mining techniques, and the results are discussed based on established theoretical frameworks. Late dropout was more frequent among students who took a stopout while having high-failure rate courses they must retake. Furthermore, students who ended in late dropout with high-failure rate courses they must retake had educational trajectories that were on average shorter and less satisfactory. On the other hand, the educational trajectories of students who ended in late dropout without high-failure rate courses they must retake were more similar to those of students who graduated late. Moreover, some differences found among ISCED fields are also described. The proposed approach can be replicated in any other university to understand the educational trajectories of late dropout students from a longitudinal perspective, generating new knowledge about the dynamic behavior of the students. This knowledge can trigger improvements to the curriculum and in the follow-up mechanisms used to increase student retention.
Curricular analytics is the area of learning analytics that looks for insights and evidence on the relationship between curricular elements and the degree of achievement of curricular outcomes. For higher education institutions, curricular analytics can be useful for identifying the strengths and weaknesses of the curricula and for justifying changes in learning pathways for students. This work presents the study of curricular trajectories as processes (i.e., sequence of events) using process mining techniques. Specifically, the Backpack Process Model (BPPM) is defined as a novel model to unveil student trajectories, not by the courses that they take, but according to the courses that they have failed and have yet to pass. The usefulness of the proposed model is validated through the analysis of the curricular trajectories of N = 4466 engineering students considering the first courses in their program. We found differences between backpack trajectories that resulted in retention or in dropout; specific courses in the backpack and a larger initial backpack sizes were associated with a higher proportion of dropout. BPPM can contribute to understanding how students handle failed courses they must retake, providing information that could contribute to designing and implementing timely interventions in higher education institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.