Indoor positioning systems (IPS) use sensors and communication technologies to locate objects in indoor environments. IPS are attracting scientific and enterprise interest because there is a big market opportunity for applying these technologies. There are many previous surveys on indoor positioning systems; however, most of them lack a solid classification scheme that would structurally map a wide field such as IPS, or omit several key technologies or have a limited perspective; finally, surveys rapidly become obsolete in an area as dynamic as IPS. The goal of this paper is to provide a technological perspective of indoor positioning systems, comprising a wide range of technologies and approaches. Further, we classify the existing approaches in a structure in order to guide the review and discussion of the different approaches. Finally, we present a comparison of indoor positioning approaches and present the evolution and trends that we foresee.
User indoor positioning has been under constant improvement especially with the availability of new sensors integrated into the modern mobile devices, which allows us to exploit not only infrastructures made for everyday use, such as WiFi, but also natural infrastructure, as is the case of natural magnetic field. In this paper we present an extension and improvement of our current indoor localization model based on the feature extraction of 46 magnetic field signal features. The extension adds a feature selection phase to our methodology, which is performed through Genetic Algorithm (GA) with the aim of optimizing the fitness of our current model. In addition, we present an evaluation of the final model in two different scenarios: home and office building. The results indicate that performing a feature selection process allows us to reduce the number of signal features of the model from 46 to 5 regardless the scenario and room location distribution. Further, we verified that reducing the number of features increases the probability of our estimator correctly detecting the user's location (sensitivity) and its capacity to detect false positives (specificity) in both scenarios.
In this paper, we present the development of an infrastructure-less indoor location system (ILS), which relies on the use of a microphone, a magnetometer and a light sensor of a smartphone, all three of which are essentially passive sensors, relying on signals available practically in any building in the world, no matter how developed the region is. In our work, we merge the information from those sensors to estimate the user’s location in an indoor environment. A multivariate model is applied to find the user’s location, and we evaluate the quality of the resulting model in terms of sensitivity and specificity. Our experiments were carried out in an office environment during summer and winter, to take into account changes in light patterns, as well as changes in the Earth’s magnetic field irregularities. The experimental results clearly show the benefits of using the information fusion of multiple sensors when contrasted with the use of a single source of information.
Date palm pollen (DPP) plays a very important role in the fertilization process, since its viability and the pollination method influence on the quality, development, and yield of the fruit. In the present study, a broad review of its main characteristics, consumption, and DPP production are presented, as well as a description of its extraction methods and viability tests. The evolution of the pollination methods used in the date palm is also presented, from its natural pollination to the use of specialized mechanical and electrical devices, as well as the use of dry DPP and the current trend towards the use of DPP in liquid suspension. Likewise, the efficiency of the methods of natural pollination (wind); traditional (strands placement); dusting hand; dusting with manual, mechanical, or electric pollinator; and liquid pollination were evaluated from the fruit set percentage (FSP). Finally, starting from a scientometric analysis, the pollination methods were widely discussed, concluding that the dusting spraying of pollen suspension with liquid DPP is the pollination method that commonly presents the highest FSP, followed by dusting dry DPP with a motorized pollinator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.