Transmembrane ephrinB proteins have important functions during embryonic patterning as ligands for Eph receptor tyrosine kinases and presumably as signal-transducing receptor-like molecules. Consistent with "reverse" signaling, ephrinB1 is localized in sphingo-lipid/cholesterol-enriched raft microdomains, platforms for the localized concentration and activation of signaling molecules. Glutamate receptor-interacting protein (GRIP) and a highly related protein, which we have termed GRIP2, are recruited into these rafts through association with the C-terminal PDZ target site of ephrinB1. Stimulation of ephrinB1 with soluble EphB2 receptor ectodomain causes the formation of large raft patches that also contain GRIP proteins. Moreover, a GRIP-associated serine/threonine kinase activity is recruited into ephrinB1-GRIP complexes. Our findings suggest that GRIP proteins provide a scaffold for the assembly of a multiprotein signaling complex downstream of ephrinB ligands.
The acquisition of spatial and functional asymmetry between the rear and the front of the cell is a necessary step for cell chemotaxis. Insulin-like growth factor-I (IGF-I) stimulation of the human adenocarcinoma MCF-7 induces a polarized phenotype characterized by asymmetrical CCR5 chemokine receptor redistribution to the leading cell edge. CCR5 associates with membrane raft microdomains, and its polarization parallels redistribution of raft molecules, including the raft-associated ganglioside GM1, glycosylphosphatidylinositol-anchored green fluorescent protein and ephrinB1, to the leading edge. The non-raft proteins transferrin receptor and a mutant ephrinB1 are distributed homogeneously in migrating MCF-7 cells, supporting the raft localization requirement for polarization. IGF-I stimulation of cholesterol-depleted cells induces projection of multiple pseudopodia over the entire cell periphery, indicating that raft disruption specifically affects the acquisition of cell polarity, but not IGF-I-induced protrusion activity. Cholesterol depletion inhibits MCF-7 chemotaxis, which is restored by replenishing cholesterol. Our results indicate that initial segregation between raft and non-raft membrane proteins mediates the necessary redistribution of specialized molecules for cell migration.
The discoidin domain receptor 2 (DDR2) is a member of a subfamily of receptor tyrosine kinases whose ligands are fibrillar collagens, and is widely expressed in postnatal tissues. We have generated DDR2-deficient mice to establish the in vivo functions of this receptor, which have remained obscure. These mice exhibit dwarfism and shortening of long bones. This phenotype appears to be caused by reduced chondrocyte proliferation, rather than aberrant differentiation or function. In a skin wound healing model, DDR2-/-mice exhibit a reduced proliferative response compared with wild-type littermates. In vitro, fibroblasts derived from DDR2-/-mutants proliferate more slowly than wild-type fibroblasts, a defect that is rescued by introduction of wild-type but not kinase-dead DDR2 receptor. Together our results suggest that DDR2 acts as an extracellular matrix sensor to modulate cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.