BackgroundMalaria transmission in Latin America is typically characterized as hypo-endemic and unstable with ~170 million inhabitants at risk of malaria infection. Although Colombia has witnessed an important decrease in malaria transmission, the disease remains a public health problem with an estimated ~10 million people currently living in areas with malaria risk and ~61,000 cases reported in 2012. This study aimed to establish the malaria prevalence in three endemic regions of Colombia to aid in designing new interventions for malaria elimination.MethodsA cross-sectional survey was conducted in three regions of Colombia with different malaria epidemiological profiles: Tierralta (Ta), Tumaco (Tu) and Buenaventura (Bv). The Annual Parasite Index (API) was 10.7, 6.9 and 3.1, respectively. Participants were asked to respond to a sociodemographic questionnaire and then were bled to determine the Duffy genotype and the prevalence of malaria infection by microscopy and quantitative real-time PCR (qPCR).ResultsThe study was conducted between October 2011 and January 2012. Eight sentinel sites with 1,169 subjects from 267 households were included. The overall prevalence of sub-microscopic infections measured by thick blood smear (TBS) was 0.3% (n = 4) whereas by qPCR it was 9.7% (n = 113), with a greater proportion (13%) in 40-50 years old individuals. Furthermore, different regions displayed different prevalence of sub-microscopic infections: Bv 12%, Ta 15%, and Tu 4%. From these 113 samples (qPCR), 74% were positive for P. vivax and 22% for P. falciparum, and 4% were mixed infections, which correlates to the overall parasite prevalence in Colombia. This study showed that in the southern Pacific coast of Colombia (Bv and Tu), around 56% of the population have a Duffy-negative genotype, compared to the northern region (Ta) where the percentage of Duffy-negative genotype is around 3%.ConclusionsSub-microscopic infections are prevalent across different regions in Colombia, particularly in areas with relatively low transmission intensity. The poor microscopy results suggest the need for more sensitive diagnostic tools for detection of sub-microscopic infections. This study underscores the importance of conducting active case surveillance to more accurately determine malaria incidence, and highlights the need for updating the malaria guidelines to track and treat sub-microscopic malaria infections.
Malaria is the most important parasitic disease worldwide, responsible for an estimated 225 million clinical cases each year. It mainly affects children, pregnant women and non-immune adults who frequently die victims of cerebral manifestations and anaemia. Although the contribution of the American continent to the global malaria burden is only around 1.2 million clinical cases annually, there are 170 million inhabitants living at risk of malaria transmission in this region. On the African continent, where Plasmodium falciparum is the most prevalent human malaria parasite, anaemia is responsible for about half of the malaria-related deaths. Conversely, in Latin America (LA), malaria-related anaemia appears to be uncommon, though there is a limited knowledge about its real prevalence. This may be partially explained by several factors, including that the overall malaria burden in LA is significantly lower than that of Africa, that Plasmodium vivax, the predominant Plasmodium species in the region, appears to display a different clinical spectrus and most likely because better health services in LA prevent the development of severe malaria cases. With the aim of contributing to the understanding of the real importance of malaria-related anaemia in LA, we discuss here a revision of the available literature on the subject and the usefulness of experimental animal models, including New World monkeys, particularly for the study of the mechanisms involved in the pathogenesis of malaria.
BackgroundMassive implementation of malaria diagnostics in low-resource countries is regarded as a pivotal strategy in control and elimination efforts. Although malaria rapid diagnostic tests (RDTs) are considered a viable alternative, there are still obstacles to the widespread implementation of this strategy, such as reporting constraints and lack of proper quality assurance of RDT-based programmes at point-of-care (POC).MethodsA prospective cohort of patients, seeking routine care for febrile episodes at health centres in malaria-endemic areas of Colombia, was used to assess the diagnostic performance of a device based on smartphone technology (Deki ReaderTM, former codename “GenZero”), that assists users at POC to process RDTs. After informed consent, patients were enrolled into the study and blood samples were collected for thick blood smear (TBS) and RDT. The RDT results were interpreted by both visual inspection and Deki Reader device and concordance between visual and device interpretation was measured. Microscopy corrected by real-time polymerase chain reaction (PCR) and microscopy were “gold standard” tests to assess the diagnostic performance.ResultsIn total, 1,807 patients were enrolled at seven health centres in malaria-endemic areas of Colombia. Thirty-three Plasmodium falciparum and 100 Plasmodium vivax cases were positive by corrected microscopy. Both sensitivity and specificity were 93.9% (95% CI 69.7-95.2) and 98.7% (95% CI 98.5-99.4) for P. falciparum, and 98.0% (95% CI 90.3-98.9) and 97.9% (95% CI 97.1-98.5) for P. vivax. Percentage concordance between visual and device interpretation of RDT was 98.5% and 99.0% for P. vivax and P. falciparum, respectively.The RDT, when compared to TBS, showed high sensitivity and specificity for P. falciparum in both visual and device interpretation, and good overall diagnostic performance for P. vivax. Comparison between PCR as gold standard and visual and device interpretation showed acceptable overall performance for both species.ConclusionsThe diagnostic performance of the Deki Reader was comparable to visual interpretation of RDTs (without significant differences) for both malaria species. Providing standardized automated interpretation of RDTs at POC in remote areas, in addition to almost real-time reporting of cases and enabling quality control would greatly benefit large-scale implementation of RDT-based malaria diagnostic programmes.
Latin America contributes 1 to 1.2 million clinical malaria cases to the global malaria burden of about 300 million per year. In 21 malaria endemic countries, the population at risk in this region represents less than 10% of the total population exposed worldwide. Factors such as rapid deforestation, inadequate agricultural practices, climate change, political instability, and both increasing parasite drug resistance and vector resistance to insecticides contribute to malaria transmission. Recently, several malaria endemic countries have experienced a significant reduction in numbers of malaria cases. This is most likely due to actions taken by National Malaria Control Programs (NMCP) with the support from international funding agencies. We describe here the research strategies and activities to be undertaken by the Centro Latino Americano de Investigación en Malaria (CLAIM), a new research center established for the non-Amazonian region of Latin America by the National Institute of Allergy and Infectious Diseases (NIAID). Throughout a network of countries in the region, initially including Colombia, Guatemala, Panama, and Peru, CLAIM will address major gaps in our understanding of changing malaria epidemiology, vector biology and control, and clinical malaria mainly due to Plasmodium vivax. In close partnership with NMCPs, CLAIM seeks to conduct research on how and why malaria is decreasing in many countries of the region as a basis for developing and implementing new strategies that will accelerate malaria elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.