The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO-copper interface in the generation of CO and the synthesis of methanol from CO hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO-copper interface. Furthermore, size and metal-oxide interactions affect the chemical and catalytic properties of the oxide making the supported nanoparticles different from bulk ZnO. The formation of a ZnO-copper interface favors the binding and conversion of CO into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500-600 K) used for the CO hydrogenation reaction. Reaction with CO oxidized the zinc, enhancing its stability over the copper substrates.
The interaction between a catalyst and reactants often induces changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy to study the surface stability of a Pt/Cu(111) single-atom alloy in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in ultrahigh vacuum conditions, where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. However, we also found that temperatures above 450 K cause restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely because of the presence of neighboring subsurface Pt atoms.
The hydrogenation of ethylene on Pt(111) single-crystal surfaces was studied by combining measurements of the kinetics of reaction using mass spectrometry detection with the simultaneous characterization of the species present on the surface using reflection− absorption infrared spectroscopy. The kinetics measured by us matches past reports on the same system, with zero-and first-order dependence on the partial pressures of ethylene and hydrogen, respectively, and extensive H−D exchange if D 2 is used instead of H 2 . The reaction takes place in the presence of an alkylidyne surface layer, which forms immediately upon exposure of the clean surface to the reaction mixture and can be removed by hydrogen or another olefin but at rates 1−2 orders of magnitude slower than the ethylene-toethane conversion. The nature of the alkylidyne surface species changes slightly upon being exposed to high pressures of hydrogen, with the carbon in the terminal methyl moiety acquiring some sp 2 character. Moreover, the alkylidyne hydrogenation rate shows an inverse relationship with H 2 pressure and is reduced by the presence of olefins in the gas phase. Turnover frequencies for the olefin hydrogenation reaction under pressures in the Torr range are high, as reported repeatedly in the past, but the corresponding reaction probabilities are quite low, below the 10 −4 range. In contrast, almost unit reaction probability was observed here in effusive collimated molecular beam experiments emulating intermediate pressure conditions.
The reducibility of metal oxides, when they serve as the catalyst support or are the active sites themselves, plays an important role in heterogeneous catalytic reactions. Here we present an integrated experimental and theoretical study that reveals how the addition of small amounts of atomically dispersed Pt at the metal/oxide interface dramatically enhances the reducibility of a Cu2O thin film by H2. X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) results reveal that, upon oxidation, a PtCu single-atom alloy (SAA) surface is covered by a thin Cu2O film and is, therefore, unable to dissociate H2. Despite this, in situ studies using ambient-pressure (AP) XPS reveal that the presence of a small amount of Pt under the oxide layer can, at the single-atom limit, promote the reduction of Cu2O by H2 at room temperature. We built two density functional theory based surface models to better understand these experimental findings: a Cu2O/Cu(111)-like surface oxide layer, known as the “29” oxide, in which Pt is alloyed into the Cu(111) surface, as well as a PtCu SAA. Our calculations suggest that the increased activity is due to the presence of atomically dispersed Pt under the surface oxide layer, which weakens the Cu–O bonds in its immediate vicinity, thus making the interface between subsurface Pt and the surface oxide a nucleation site for the formation of metallic Cu. This initial step in the reduction process results in the presence of surface Pt atoms surrounded by metallic Cu patches, and the Pt atoms become active in H2 dissociation, which consequently accelerates the reduction of the oxide layer. This work demonstrates how isolated Pt atoms at the metal/oxide interface of a Cu-based catalyst accelerate the reduction of the oxide and, therefore, help maintain the active, reduced state of the catalyst under the reaction conditions.
A chemical approach to the deposition of thin films on solid surfaces is highly desirable but prone to affect the final properties of the film. To better understand the origin of these complications, the initial stages of the atomic layer deposition of titania films on silica mesoporous materials were characterized. Adsorption–desorption measurements indicated that the films grow in a layer-by-layer fashion, as desired, but initially exhibit surprisingly low densities, about one-quarter of that of bulk titanium oxide. Electron microscopy, X-ray diffraction, UV/visible, and X-ray absorption spectroscopy data pointed to the amorphous nature of the first monolayers, and EXAFS and 29Si CP/MAS NMR results to an initial growth via the formation of individual tetrahedral Ti–oxide units on isolated Si–OH surface groups with unusually long Ti–O bonds. Density functional theory calculations were used to propose a mechanism where the film growth starts at the nucleation centers to form an open 2D structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.