Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. The magnitude of the elastic and rupture modulus is several orders of magnitude lower compared to dense glass. The mechanical behaviours (elastic and brittle) are related to the same kinds of gel characteristics: pore volume, silanol content and pore size. Elastic modulus depends strongly on the volume fraction of pores and on the condensation reaction between silanols. Concerning the brittleness features: rupture modulus and toughness, it is shown that pores size plays an important role. Pores can be OPEN ACCESS Gels 2015, 1 257 considered as flaws in the terms of fracture mechanics and the flaw size is related to the pore size. Weibull's theory is used to show the statistical nature of flaw. Moreover, stress corrosion behaviour is studied as a function of environmental conditions (water and alcoholic atmosphere) and temperature.
Solid polymorphism of 4-alkyl-4'-cyanobiphenyl (nCB) was studied so far as a function of thermal history. In this paper we show that metastable solid phases of 4-octyl-4'-cyanobiphenyl (8CB) are also formed when the mesogens are confined in porous silica matrices and we study their structure by neutron diffraction and by Raman spectroscopy. Three metastable solid states are identified: one crystalline phase K', two frozen-in smectic-like phases K(s) and K'(s). We discuss the relation between the structure of the metastable solid phases and that of the mesomorph phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.