The use of Scramjets for space access could lead to important reductions in cost for satellite placement in Low Earth Orbit (LEO) and Sun-synchronous Orbit (SSO). The design of a fully operating Scramjet has proven extremely challenging, due to different issues. One of these is efficient fuel-air mixing, a prerequisite for efficent fuel combustion within the short air residence time during supersonic combustion. It has been suggested that streamwise vortices, either naturally generated by the Scramjet intake geometry, or artificially generated by vortex generators, could be used to enhance the mixing rate of fuel in air. This work presents a numerical study of the interaction between the fuel plume of a porthole injector and streamwise vortices, with focus on the effect on mixing. Flow conditions representative of a Mach 12 flight and equivalent ground-based Scramjet test conditions are investigated. The results show a significant enhancement in fuel penetration and mixing.This numerical investigation quantifies the increase in mixing efficiency that can be attained in a canonical geometry by tailoring the fuel jet location to exploit naturally occurring streamwise vortices. Three different vortex intensities, two different injector locations and two different injection to free stream momentum ratios are investigated. The relevant mechanisms driving the mixing enhancement and the best injector location are identified.
Because the pumping of samples by viscous drag forces and the use of flow-focusing for several sheath flows are widely used in microfluidic devices applications, the present investigation treats about the transport of multilayer immiscible viscoelastic fluids into a slit microchannel by electro-osmotic and pressure-driven effects. The mathematical formulation for the steady-state analysis of the flow field is based on the Poisson–Boltzmann equation and the Cauchy momentum equation. Each fluid layer has independent physical and electrical properties and is formed by a mixture of an electrolyte with a fluid that provides a viscoelastic behavior that follows the simplified Phan-Thien-Tanner (sPTT) rheological model. In the problem, the fluids are conductive and the walls of the microchannel are dielectrics, yielding electric double layers in the liquid–liquid and solid–liquid interfaces; therefore, the flow field is controlled by interfacial electrostatic conditions. The semi-analytical results are centered in the description of the velocity profiles and in the flowrate as a function of a series of dimensionless parameters arising from the mathematical modeling, where we can observe that the multilayer flow characteristics are related to the type of electrolyte solutions, since when the flow field is formed by two or more, interesting interfacial effects appear that modify the shape of velocity profiles and change the magnitude of flowrate in favor or against, depending of the positions of each fluid layer; in addition, the flow raises or diminishes by applying an external pressure gradient.
This work investigates the transient multilayer electro-osmotic flow of viscoelastic fluids through an annular microchannel. The dimensionless mathematical model of multilayer flow is integrated by the linearized Poisson-Boltzmann equation, the Cauchy momentum equation, the rheological Maxwell model, initial conditions, and the electrostatic and hydrodynamic boundary conditions at liquid-liquid and solid-liquid interfaces. Although the main force that drives the movement of fluids is due to electrokinetic effects, a pressure gradient can also be added to the flow. The semi-analytical solution for the electric potential distribution and velocity profiles considers analytical techniques as the Laplace transform method, with numerical procedures using the inverse matrix method for linear algebraic equations and the concentrated matrix exponential method for the inversion of the Laplace transform. The results presented for velocity profiles and velocity tracking at the transient regime reveal an interesting oscillatory behavior that depends on elastic fluid properties via relaxation times. The time required for the flow to reach steady-state is highly dependent on the viscosity ratios and the dimensionless relaxation times. In addition, the influence of other dimensionless parameters on the flow as the electrokinetic parameters, zeta potentials at the walls, permittivity ratios, ratio of pressure forces to electro-osmotic forces, number of fluid layers, and annular thickness are investigated. The findings of this study have significant implications for the precise control of parallel fluid transport in microfluidic devices for flow-focusing applications.
With the advance of microfluidic platforms and due to the need to solve different implications that still exist on the transport of electrically conducting fluids, the analysis on strategies in micropumps that involve a simplicity in its structure, absence of mechanical moving parts, flow reversibility and low power requirement is current. Therefore, the present investigation contributes with the analysis of the combined magnetohydrodynamic/pressure driven flow of multilayer immiscible fluids in a microchannel formed by two parallel flat plates. The mathematical model is based in a steady fully developed flow and the pumped fluids follow the power law model to describe the pseudoplastic fluids rheology, while magnetic effects on the flow are given from the Lorentz forces. The velocity profiles and flow rate are obtained in the limit of small Hartmann numbers by solving analytically a closed system of ordinary differential equations, together to the corresponding boundary conditions at the solid-liquid interfaces in the channel walls and at the liquid-liquid interfaces between the fluid layers. The results show that the flow field is controlled by the dimensionless parameters that arise from the mathematical modeling being a parameter that indicates the competition between pressure to the magnetic forces, magnetic parameters related to Hartmann numbers, viscosities ratios between the fluids, flow behavior indexes and the dimensionless position of the liquid-liquid interfaces.
This paper presents the analytical solution of a combined electroosmotic/pressure driven flow of three viscoelastic immiscible fluids in a parallel flat plate microchannel. The mathematical model is based in the Poisson-Boltzmann equation and Cauchy momentum conservation equation. In the steady state analysis, we consider that the three fluids are electric conductors and obey to the simplified Phan-Thien-Tanner rheological model; therefore, different conditions at the interface between the fluids as electric slip, surface charge density and electro-viscous stresses balance are discussed in detail. Results show the transport phenomena coupled in the description of the velocity profiles, by the analyzing of the dimensionless parameters obtained, such as: the electric slips, the electric permittivities ratios, the surface charge densities, the zeta potentials at the walls, the interfaces positions, the viscosity ratios, the viscoelastic and electrokinetic parameters, and the term involving the external pressure gradient. Here, the presence of a net electric charges balance at the interface, breaks the continuity of shear viscous stresses, modifying the flow field; hence, for the established electric conditions at the interface through the values of the electric slips and the surface charge densities, play a role like a switch on the flow behavior. This investigation extends the knowledge about the techniques on the control of immiscible non-Newtonian fluids in microescale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.