Fusion reactors create extreme conditions for structures close to the plasma. It seems unlikely that materials currently being considered can meet all performance requirements under such conditions. We explore the possibility of separating functionality in composite structures to overcome this barrier. To this end, several suggestions of directions are made for the search for such materials. In particular, we note some of the new materials that have become available only in the last two decades. Those discussed include the use of diamondlike carbon coatings, nano-structured materials, layered structures, stacked structures, and viscous coatings, including more complex carbon composite materials. Materials modelling will be an important component in the search for viable materials. However, the extreme conditions and the nature of the radiation damage demand extensions both to molecular dynamics and to the much-used Norgett-Robinson-Torrens model. We identify some of the relevant condensed matter challenges for modelling and materials testing in the fusion context, including the relevance of spallation source neutron testing to fusion materials evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.