Group size may influence fitness benefits and costs that emerge from cooperative and competitive interactions in social species. However, evidence from plural breeding mammals indicates that group size is insufficient to explain variation in direct fitness, implying other attributes of social groups were overlooked. We studied the natural population of a social rodent during 5 years to test the hypothesis that social stability - in terms of group composition - modulates the effects of increasing number of breeding females (a proxy of communal rearing) and males on the number of offspring weaned (sired) and on the number of offspring weaned (sired) surviving to breeding age (two proxies of direct fitness). We quantified the effects of social stability (measured as changes in female or male group members between mating and the onset of lactation) on these fitness measures. We used live trapping, telemetry and DNA markers to determine social and fitness measures. Social stability in degus was variable in terms of the number of changes in group composition across groups. Low stability was mostly due to mortality and emigration of group members. Results supported a modulating role of social stability on the relationship between group size and the number of offspring weaned (sired). Stability in female and male group composition were both modulators of fitness to females and males. The modulatory role of stability was sex specific, where high social stability was often fitness beneficial to the females. Instead, low social stability was fitness enhancing to the males.
Maternal stress can significantly affect offspring fitness. In laboratory rodents, chronically stressed mothers provide poor maternal care, resulting in pups with hyperactive stress responses. These hyperactive stress responses are characterized by high glucocorticoid levels in response to stressors plus poor negative feedback, which can ultimately lead to decreased fitness. In degus (Octodon degus) and other plural breeding rodents that exhibit communal care, however, maternal care from multiple females may buffer the negative impact on pups born to less parental mothers. We used wild, free-living degus to test this hypothesis. After parturition, we manipulated maternal stress by implanting cortisol pellets in 0%, 50-75%, or 100% of adult females within each social group. We then sampled pups for baseline and stress-induced cortisol, negative feedback efficacy, and adrenal sensitivity. From groups where all mothers were implanted with cortisol, pups had lower baseline cortisol levels and male pups additionally had weaker negative feedback compared to 0% or 50-75% implanted groups. Contrary to expectations, stress-induced cortisol did not differ between treatment groups. These data suggest that maternal stress impacts some aspects of the pup stress response, potentially through decreased maternal care, but that presence of unstressed mothers may mitigate some of these effects. Therefore, one benefit of plural breeding with communal care may be to buffer post-natal stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.