The design of the techniques and algorithms used by the static, dynamic and interactive security testing tools differ. Therefore, each tool detects to a greater or lesser extent each type of vulnerability for which they are designed for. In addition, their different designs mean that they have different percentages of false positives. In order to take advantage of the possible synergies that different analysis tools types may have, this paper combines several static, dynamic and interactive analysis security testing tools—static white box security analysis (SAST), dynamic black box security analysis (DAST) and interactive white box security analysis (IAST), respectively. The aim is to investigate how to improve the effectiveness of security vulnerability detection while reducing the number of false positives. Specifically, two static, two dynamic and two interactive security analysis tools will be combined to study their behavior using a specific benchmark for OWASP Top Ten security vulnerabilities and taking into account various scenarios of different criticality in terms of the applications analyzed. Finally, this study analyzes and discuss the values of the selected metrics applied to the results for each n-tools combination.
Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.
Featured Application: The systematic and methodological process of analysis described in this document will provide a complete understanding of the life cycle of a malware specimen in terms of its behavior, operation, interaction with the environment, methods of concealment and obfuscation, system updates, and communications.Abstract: Malware threats pose new challenges to analytic and reverse engineering tasks. It is needed for a systematic approach to that analysis, in an attempt to fully uncover their underlying attack vectors and techniques and find commonalities between them. In this paper, a method of malware analysis is described, together with a report of its application to the case of Flame and Red October. The method has also been used by different analysts to analyze other malware threats like 'Stuxnet', 'Dark Comet', 'Poison Ivy', 'Locky', 'Careto', and 'Sofacy Carberp'. The method presented in this work is a systematic and methodological process of analysis, whose main objective is the acquisition of knowledge as well as to gain a full understanding of a particular malware. Using the proposed method to analyze two well-known malware as 'Flame' and 'Red October' will help to understand the added value of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.