The objective of this in vitro study was to evaluate and compare the accuracy of zygomatic dental implant (ZI) placement carried out using a dynamic navigation system. Materials and Methods: Forty (40) ZIs were randomly distributed into one of two study groups: (A) ZI placement via a computer-aided dynamic navigation system (n = 20) (navigation implant (NI)); and (B) ZI placement using a conventional free-hand technique (n = 20) (free-hand implant (FHI)). A cone-beam computed tomography (CBCT) scan of the existing situation was performed preoperatively to plan the surgical approach for the computer-aided study group. Four zygomatic dental implants were placed in anatomically based polyurethane models (n = 10) manufactured by stereolithography, and a postoperative CBCT scan was performed. Subsequently, the preoperative planning and postoperative CBCT scans were added to dental implant software to analyze the coronal entry point, apical end point, and angular deviations. Results were analyzed using the Student’s t-test. Results: The results showed statistically significant differences in the apical end-point deviations between FHI and NI (p = 0.0018); however, no statistically significant differences were shown in the coronal entry point (p = 0.2617) or in the angular deviations (p = 0.3132). Furthermore, ZIs placed in the posterior region showed more deviations than the anterior region at the coronal entry point, apical end point, and angular level. Conclusions: The conventional free-hand technique enabled more accurate placement of ZIs than the computer-assisted surgical technique. In addition, placement of ZIs in the anterior region was more accurate than that in the posterior region.
Background Zygomatic implants are widely used in the rehabilitation of severely atrophic maxillae, but implant placement is not without risks, and it can potentially cause damage to related anatomical structures. The aim of this study was to perform a comparative analysis of the accuracy of static navigation systems in placing zygomatic dental implants in comparison to dynamic navigation systems. Methods Sixty zygomatic dental implants were randomly allocated to one of three study groups, categorized by which implant placement strategy was used: A: computer-aided static navigation system (n = 20) (GI); B: computer-aided dynamic navigation system (n = 20) (NI); or C: free-hand technique (n = 20) (FHI). For the computer-aided study groups, a preoperative cone-beam computed tomography (CBCT) scan of the existing situation was performed in order to plan the approach to be used during surgery. Four zygomatic dental implants were inserted in each of fifteen polyurethane stereolithographic models (n = 15), with a postoperative CBCT scan taken after the intervention. The pre- and postoperative CBCT scans were then uploaded to a software program used in dental implantology to analyze the angular deviations, apical end point, and coronal entry point. Student’s t-test was used to analyze the results. Results The results found statistically significant differences in apical end-point deviations between the FHI and NI (p = 0.0053) and FHI and GI (p = 0.0004) groups. There were also statistically significant differences between the angular deviations of the FHI and GI groups (p = 0.0043). Conclusions The manual free-hand technique may enable more accurate placement of zygomatic dental implants than computer-assisted surgical techniques due to the different learning curves required for each zygomatic dental implant placement techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.