Medium frequency transformers (MFTs) are a key component of DC–DC dual active bridge (DAB)-type converters. These technologies are becoming a quintessential part of renewable energy solutions, such as photovoltaic systems and wind energy power plants, as well as in modern power grid interfaces functioning as solid-state transformers in smart-grid environments. The weight and physical dimensions of an MFT are key data for the design of these devices. The size of an MFT is reduced by increasing its operating frequency. This reduction implicates higher power density through the transformer windings, as well as other design requirements distinct to those used for conventional 60/50 Hz transformers; therefore, new MFT design procedures are needed. This paper introduces a novel methodology for designing MFTs, using nanocrystalline cores, and tests it using an MFT–DAB lab prototype. Different to other MFT design procedures, this new design approach uses a modified version of the area-product technique, which consists of smartly modifying the core losses computation, and includes nanocrystalline cores. The core losses computation is supported by a full analysis of the dispersion inductance. For purposes of validation, a model MFT connected to a DAB converter is simulated in Matlab-Simulink (The MathWorks, v2014a, Mexico City, Mexico). In addition, a MFT–DAB lab prototype (1 kVA at 5 kHz) is implemented to experimentally probe further the validity of the methodology just proposed. These results demonstrate that the analytic calculations results match those obtained from simulations and lab experiments. In all cases, the efficiency of the MFT is greater than 99%.
High performance, highly efficient DC-DC converters play a key role in improving the penetration of renewable energy sources in the context of smart grids in applications such as solid-state transformers, built-in power drives in electric vehicles and interfacing photovoltaic and wind-power systems. Advanced medium-frequency transformers (MFTs) are fundamental to enhance DC-DC converters and determining its behavior, therefore MFT design procedures have become increasingly important in this context. This paper investigates which type of core material, between nanocrystalline and silicon steel, has the best properties for designing MFTs for distinct applications. Unlike to other proposals, in this work, two 1 kVA-120 V/240 V-1 kHz lab MFT prototypes, with a different type of core material, are developed for the purpose of comparing its physical characteristics, behavior, and performance under real-life conditions. A final section, the experimental results show that the nanocrystalline MFT has greater power density and efficiency. The results of this work introduce nanocrystalline MFTs as an option in a wider range of applications in niches in which other materials are currently used.
Voltage control based on reactive power compensation is a fundamental aspect of the operation of ac electric power systems. This paper presents a novel shunt compensation scheme based on a virtual air gap variable reactor. The scheme is fully developed, from the adaptation of the virtual air gap principle to high-voltage applications and the determination of its expected performance, to the proposal of a digital cascade control using internal model and proportional-integral controllers. The suitability and flexibility of the device, and the voltage control and reactive power compensation scheme are verified by means of laboratory tests performed in a small-scale prototype. Measured results show that the proposed device and its control provide a robust load compensation scheme for ac systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.