Abstract-Most of the IoT applications are distributed in nature generating large data streams which have to be analyzed in near real-time. Solutions based on Complex Event Processing (CEP) have the potential to extract high-level knowledge from these data streams but the use of CEP for distributed IoT applications is still in early phase and involves many drawbacks. The manual setting of rules for CEP is one of the major drawback. These rules are based on threshold values and currently there are no automatic methods to find the optimized threshold values. In real-time dynamic IoT environments, the context of the application is always changing and the performance of current CEP solutions are not reliable for such scenarios. In this regard, we propose an automatic and context aware method based on clustering for finding optimized threshold values for CEP rules. We have developed a lightweight CEP called µCEP to run on low processing hardware which can update the rules on the run. We have demonstrated our approach using a real-world use case of Intelligent Transportation System (ITS) to detect congestion in near real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.