Assets reliability is a key issue to consider in the maintenance management policy and given its importance several estimation methods and models have been proposed within the reliability engineering discipline. However, these models involve certain assumptions which are the source of different uncertainties inherent to the estimations. An important source of uncertainty is the operational context in which the assets operate and how it affects the different failures. Therefore, this paper contributes to the reduction of the uncertainty coming from the operational context with the proposal of a novel method and its validation through a case study. The proposed model specifically addresses changes in the operational context by implementing dynamic capabilities in a new conception of the Proportional Hazards Model. It also allows to model interactions among working environment variables as well as hidden phenomena thanks to the integration within the model of artificial neural network methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.