Alucones are one of the best-known films in the Molecular Layer Deposition (MLD) field. In this work, we prove that alucone/Al2O3 nanolaminate synthesis can be successfully performed by alternating alucone MLD growth with static O2 plasma exposures.
Ultra-violet (UV) light has still a limited scope in optical microscopy despite its potential advantages over visible light in terms of optical resolution and of interaction with a wide variety of biological molecules. The main challenge is to control in a robust, compact and cost-effective way UV light beams at the level of a single optical spatial mode and concomitantly to minimize the light propagation loss. To tackle this challenge, we present here photonic integrated circuits made of aluminum oxide thin layers that are compatible with both UV light and high-volume manufacturing. These photonic circuits designed at a wavelength of 360 nm enable super-resolved structured illumination microscopy with conventional wide-field microscopes and without modifying the usual protocol for handling the object to be imaged. As a biological application, we show that our UV photonic chips enable to image the autofluorescence of yeast cells and reveal features unresolved with standard wide-field microscopy.
In the quest for a more compact and cheaper Raman sensor, photonic integration and plasmonic enhancement are central. Nanoplasmonic slot waveguides exhibit the benefits of SERS substrates while being compatible with photonic integration and mass-scale (CMOS) fabrication. A difficulty in pursuing further integration of the Raman sensor with lasers, spectral filters, spectrometers and interconnecting waveguides lies in the presence of a photon background generated by the excitation laser field in any dielectric waveguide constituting those elements. Here, we show this problem can be mitigated by using a multi-mode interferometer and a nanoplasmonic slot waveguide operated in back-reflection to greatly suppress the excitation field behind the sensor while inducing very little photon background.
There is a growing interest in photonic integrated circuits for biophotonic applications. Here, we present such a circuit operating in the ultraviolet that allows us to implement super-resolved label-free structured illumination on yeast cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.