Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies 1,2 . Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos 3 . Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto 4 , and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 6 60 km) and albedo are roughly known 5,6 , there has been no constraint on its density and there were expectations that it could have a Plutolike atmosphere 4,7,8 . Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 6 9 km (1s) and 1,502 6 45 km, implying a V-band geometric albedo p V 5 0.77 6 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1s) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 6 0.3 g cm 23 is inferred from the data. Stellar occultations allow detection of very tenuous atmospheres and can provide accurate sizes and albedos 9,10,11,3,12 , so we embarked on a programme of predicting and observing occultations by (136472) Makemake, also known as 2005 FY 9 . The occultation of the faint star NOMAD 1181-0235723 (with magnitude m R 5 18.22, where NOMAD is the Naval Observatory Merged Astronomic Dataset) was predicted in 2010 by methods similar to those used to predict occultations by several large bodies 13 , but refined as shown in Supplementary Information section 1. We arranged a campaign involving 16 telescopes, listed in Supplementary Table 1. The occultation was successfully recorded from seven telescopes, listed in Table 1, at five sites. From the images obtained, we made photometric measurements as a function of time (light curves).The light curves of the occultation are shown in Fig. 1. Fitting synthetic square-well models to the light curves yielded the disappearance and reappearance times of the star (Table 1), from which we calculate one chord in the plane of the sky for each site (see Supplementary Information section 3). On the basis of analyses of the light curves, taking into account the cycle time between the images and the dispersion of the data, we deduce that there were no secondary occultations, so we can reject the existence of a satellite larger than about 200 km in diameter in the areas sampled by the chords. The result is consistent with a deep-image survey that did not find any satellites 16 . The chords can be fitted with two shape models (Fig. 2). Our preferred shape, which is compatible with our own and other observations (see Supplementary Information section 8), corresponds to an elliptical object ...
We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R equiv = 555±2.5 km and geometric visual albedo p V = 0.109±0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of = 0.087 +0.0268 −0.0175 , an equatorial radius of 569 +24 −17 km, and a density of 1.99 ± 0.46 g cm −3 . The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere.
We present new high resolution imaging of a light-scattering dust ring and halo around the young star HD 35841. Using spectroscopic and polarimetric data from the Gemini Planet Imager in H-band (1.6 µm), we detect the highly inclined (i = 85 • ) ring of debris down to a projected separation of ∼12 au (∼0. 12) for the first time. Optical imaging from HST /STIS shows a smooth dust halo extending outward from the ring to >140 au (>1.4 ). We measure the ring's scattering phase function and polarization fraction over scattering angles of 22 • -125 • , showing a preference for forward scattering and a polarization fraction that peaks at ∼30% near the ansae. Modeling of the scattered-light disk indicates that the ring spans radii of ∼60-220 au, has a vertical thickness similar to that of other resolved dust rings, and contains grains as small as 1.5 µm in diameter. These models also suggest the grains have a low porosity, are more likely to consist of carbon than astrosilicates, and contain significant water ice. The halo has a surface brightness profile consistent with that expected from grains pushed by radiation pressure from the main ring onto highly eccentric but still bound orbits. We also briefly investigate arrangements of a possible inner disk component implied by our spectral energy distribution models, and speculate about the limitations of Mie theory for doing detailed analyses of debris disk dust populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.