A surface plasmon resonance (SPR) biosensor was applied to detect influenza-A virus in human. The detection scheme was based on the measurement of SPR response unit resulting from the hybridization of biotinylated DNA probe immobilized on the SPR chip modified with streptavidin and the product of polymerase chain reaction reversed from the influenza-A virus RNA segment (AB514942). The prepared biosensor demonstrated optimum performance in 200 mM phosphate buffered saline (PBS) with a pH value of 7.5 and exhibited good sensitivity with a detection limit of 0.5 pM for perfect complementary hybridization. In addition, the prepared biosensor can effectively discriminate perfect complementary and other three types of mismatch: base substitute, base insertion and base deletion in 200 mM phosphate buffered saline (PBS) with a pH value of 7.5. Furthermore, the influenza-A virus in throat swab samples was directly (without RNA extraction, and amplification) detected with the prepared machine, and the result showed that the SPR response unit was in response to the dilution factor of throat swabs. Better sensitivity and specificity based on Surface Plasmon Resonance biosensor were obtained which demonstrated a promising potentiality in detecting influenza-A virus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.