BackgroundMany studies have tracked the distribution and persistence of avian haemosporidian communities across space and time at the population level, but few studies have investigated these aspects of infection at the individual level over time. Important aspects of parasite infection at the individual level can be missed if only trends at the population level are studied. This study aimed to determine how persistent Haemosporida are in great tit individuals recaptured over several years, whether parasitaemia differed by parasite lineage (mitochondrial cytochrome b haplotype) and how co-infection (i.e. concurrent infection with multiple genera of parasites) affects parasitaemia and body mass.MethodsParasite prevalence was determined by polymerase chain reaction (PCR), quantitative PCR were used to assess parasitaemia and sequencing was employed to determine the identity of the lineages using the MalAvi database.ResultsHaemosporidian prevalence was high over sampled years with 98% of 55 recaptured individuals showing infection in at least one year of capture. Eighty-two percent of all positive individuals suffered co-infection, with an overall haemosporidian lineage diversity of seventeen. Plasmodium and Haemoproteus parasites were found to be highly persistent, with lineages from these genera consistently found in individuals across years and with no differences in individual parasitaemia being recorded at subsequent captures. Conversely, Leucocytozoon parasites showed higher turnover with regard to lineage changes or transitions in infection status (infected vs non-infected) across years. Parasitaemia was found to be lineage specific and there was no relationship between Plasmodium parasitaemia or host body condition and the presence of Leucocytozoon parasites.ConclusionsThe findings of this study suggest that different genera of haemosporidian parasites interact differently with their host and other co-infecting parasites, influencing parasite persistence most likely through inter-parasite competition or host-parasite immune interactions. Even-though co-infections do not seem to result in increased virulence (higher parasitaemia or poorer host body condition), further investigation into infection potential of these parasites, both individually and as co-infections, is necessary.
Avian malaria studies have taken a prominent place in different aspects of evolutionary ecology. Despite a recent interest in the role of vectors within the complex interaction system of the malaria parasite, they have largely been ignored in most epidemiological studies. Epidemiology of the disease is however strongly related to the vector's ecology and behaviour, and there is a need for basic investigations to obtain a better picture of the natural associations between Plasmodium lineages, vector species and bird hosts.The aim of the present study was to identify the mosquito species involved in the transmission of the haemosporidian parasites Plasmodium spp. in two wild populations of breeding great tits (Parus major) in western Switzerland. Additionally, we compared Plasmodium lineages, based on mitochondrial DNA cytochrome b sequences, between the vertebrate and dipteran hosts, and evaluated the prevalence of the parasite in the mosquito populations. Plasmodium spp. were detected in Culex pipiens only, with an overall 6.6% prevalence. Among the six cytochrome b lineages of Plasmodium identified in the mosquitoes, three were also present in great tits. The results provide evidence for the first time that C. pipiens can act as a natural vector of avian malaria in Europe and yield baseline data for future research on the epidemiology of avian malaria in European countries.
BackgroundOne of the major issues concerning disease ecology and conservation is knowledge of the factors that influence the distribution of parasites and consequently disease outbreaks. This study aimed to investigate avian haemosporidian composition and the distribution of these parasites in three altitudinally separated great tit (Parus major) populations in western Switzerland over a three-year period. The objectives were to determine the lineage diversity of parasites occuring across the study populations and to investigate whether altitudinal gradients govern the distribution of haemosporidian parasites by lineage.MethodsIn this study molecular approaches (PCR and sequencing) were used to detect avian blood parasites (Plasmodium sp., Haemoproteus sp. and Leucocytozoon sp.) in populations of adult great tits caught on their nests during three consecutive breeding seasons.ResultsHigh levels of parasite prevalence (88-96%) were found across all of the study populations with no significant altitude effect. Altitude did, however, govern the distribution of parasites belonging to different genera, with Plasmodium parasites being more prevalent at lower altitudes, Leucocytozoon parasites more at high altitude and Haemoproteus parasite prevalence increasing with altitude. A total of 27 haemosporidian parasite lineages were recorded across all study sites, with diversity showing a positive correlation to altitude. Parasites belonging to lineage SGS1 (P. relictum) and PARUS4 and PARUS19 (Leucocytozoon sp.) dominated lower altitudes. SW2 (P. polare) was the second most prevalent lineage of parasite detected overall and these parasites were responsible for 68% of infections at intermediate altitude, but were only documented at this one study site.ConclusionsAvian haemosporidian parasites are not homogeneously distributed across host populations, but differ by altitude. This difference is most probably brought about by environmental factors influencing vector prevalence and distribution. The high occurrence of co-infection by different genera of parasites might have pronounced effects on host fitness and should consequently be investigated more rigorously.
Oxidative stress occurs when the production of reactive oxygen species (ROS) by an organism exceeds its capacity to mitigate the damaging effects of the ROS. Consequently, oxidative stress hypotheses of ageing argue that a decline in fecundity and an increase in the likelihood of death with advancing age reported at the organism level are driven by gradual disruption of the oxidative balance at the cellular level. Here, we measured erythrocyte resistance to oxidative stress in the same individuals over several years in two free-living bird species with contrasting life expectancy, the great tit (known maximum life expectancy is 15.4 years) and the Alpine swift (26 years). In both species, we found evidence for senescence in cell resistance to oxidative stress, with patterns of senescence becoming apparent as subjects get older. In the Alpine swift, there was also evidence for positive selection on cell resistance to oxidative stress, the more resistant subjects being longer lived. The present findings of inter-individual selection and intra-individual deterioration in cell oxidative status at old age in free-living animals support a role for oxidative stress in the ageing of wild animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.