The toxic dinoflagellate Alexandrium catenella isolated from fjords in Southern Chile produces several analogues of saxitoxin and has been associated with outbreaks of paralytic shellfish poisoning. Three bacterial strains, which remained in close association with this dinoflagellate in culture, were isolated by inoculating the dinoflagellate onto marine agar. The phenotypically different cultivable bacterial colonies were purified. Their genetic identification was done by polymerase chain reaction amplification of the 16S rRNA genes. Partial sequence analysis suggested that the most probable affiliations were to two bacterial phyla: Proteobacteria and the Cytophaga group. The molecular identification was complemented by morphological data and biochemical profiling. The three bacterial species, when grown separately from phytoplankton cells in high-nutrient media, released algal-lytic compounds together with aminopeptidase, lipase, glucosaminidase, and alkaline phosphatase. When the same bacteria, free of organic nutrients, were added back to the algal culture they displayed no detrimental effects on the dinoflagellate cells and recovered their symbiotic characteristics. This observation is consistent with phylogenetic analysis that reveals that these bacteria correspond to species distinct from other bacterial strains previously classified as algicidal bacteria. Thus, bacterial-derived lytic activities are expressed only in the presence of high-nutrient culture media and it is likely that in situ environmental conditions may modulate their expression.
Glioblastoma (GBM) is the most prevalent type of primary brain tumor. Treatment options include maximal surgical resection and drug-radiotherapy combination. However, patient prognosis remains very poor, prompting the search for new models for drug discovery and testing, especially those that allow assessment of
in vivo
responses to treatment. Zebrafish xenograft models have an enormous potential to study tumor behavior, proliferation and cellular interactions. Here, an
in vivo
imaging and proliferation assessment method of human GBM xenograft in zebrafish larvae is introduced. Zebrafish larvae microinjected with fluorescently labeled human GBM cells were screened daily using a stereomicroscope and imaged by light sheet fluorescence microscopy (LSFM); volumetric modeling and composite reconstructions were done in single individuals. Larvae containing tumors were enzymatically dissociated, and proliferation of cancer cells was measured using dye dilution by flow cytometry. GBM micro-tumors formed mainly in the zebrafish yolk sac and perivitelline space following injection in the yolk sac, with an engraftment rate of 73%. Daily image analysis suggested cellular division, as micro-tumors progressively grew with differentiated fluorescence intensity signals. Using dye dilution assay by flow cytometry, at least three GBM cells' division cycles were identified. The combination of LSFM and flow cytometry allows assessment of proliferation and tumor growth of human GBM inside zebrafish, making it a useful model to identify effective anti-proliferative agents in a preclinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.