Medical image quality is crucial to obtaining reliable diagnostics. Most quality controls rely on routine tests using phantoms, which do not reflect closely the reality of images obtained on patients and do not reflect directly the quality perceived by radiologists. The purpose of this work is to develop a method that classifies the image quality perceived by radiologists in MR images. The focus was set on lumbar images as they are widely used with different challenges. Three neuroradiologists evaluated the image quality of a dataset that included T1-weighting images in axial and sagittal orientation, and sagittal T2-weighting. In parallel, we introduced the computational assessment using a wide range of features extracted from the images, then fed them into a classifier system. A total of 95 exams were used, from our local hospital and a public database, and part of the images was manipulated to broaden the distribution quality of the dataset. Good recall of 82% and an area under curve (AUC) of 77% were obtained on average in testing condition, using a Support Vector Machine. Even though the actual implementation still relies on user interaction to extract features, the results are promising with respect to a potential implementation for monitoring image quality online with the acquisition process.
Image segmentation is a fundamental technique in medical applications. For example, the extraction of biometrical parameter of tumors is of paramount importance both for clinical practice and for clinical studies that evaluate new brain tumor therapies. Tumor segmentation from brain Magnetic Resonance Images (MRI) is a difficult task due to strong signal heterogeneities and weak contrast at the boundary delimitation. In this work we propose a new framework to segment the Glioblastoma Multiforme (GBM) from brain MRI. The proposed algorithm was constructed based on two well known techniques: Region Growing and Fuzzy C-Means. Furthermore, it considers the intricate nature of the GBM in MRI and incorporates a fuzzy formulation of Region Growing with an automatic initialization of the seed points. We report the performance results of our segmentation framework on brain MRI obtained from patients of the chilean Carlos Van Buren Hospital and we compare the results with Region Growing and the classic Fuzzy C-Means approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.