Chile is one of the main exporters of sweet cherries in the world and one of the few in the southern hemisphere, being their harvesting between October and January. Hence, Chilean cherries have gained market in the last few years and positioned Chile in a strategic situation which motivates to undergo through a deep innovation process in the field. Currently, cherry crop estimates have an error of approximately 45%, which propagates to all stages of the production process. In order to mitigate such error, we develop, test and evaluate a deep neural-based approach, using a portable artificial vision system to enhance the cherries harvesting estimates. Our system was tested in a cherry grove, under real field conditions. It was able to detect cherries with up to 85% of accuracy and to estimate production with up to 25% of error. In addition, it was able to classify cherries into four sizes, for a better characterization of the production for exportation.
Fuel moisture content (FMC) proved to be one of the most relevant parameters for controlling fire behavior and risk, particularly at the wildland-urban interface (WUI). Data relating FMC to spectral indexes for different species are an important requirement identified by the wildfire safety community. In Valparaíso, the WUI is mainly composed of Eucalyptus Globulus and Pinus Radiata—commonly found in Mediterranean WUI areas—which represent the 97.51% of the forests plantation inventory. In this work we study the spectral signature of these species under different levels of FMC. In particular, we analyze the behavior of the spectral reflectance per each species at five dehydration stages, obtaining eighteen spectral indexes related to water content and, for Eucalyptus Globulus, the area of each leave—associated with the water content—is also computed. As the main outcome of this research, we provide a validated linear regression model associated with each spectral index and the fuel moisture content and moisture loss, per each species studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.