Boosted by the progress in deep learning, Single Image Super-Resolution (SISR) has gained a lot of interest in the remote sensing community, who sees it as an opportunity to compensate for satellites’ ever-limited spatial resolution with respect to end users’ needs. This is especially true for Sentinel-2 because of its unique combination of resolution, revisit time, global coverage and free and open data policy. While there has been a great amount of work on network architectures in recent years, deep-learning-based SISR in remote sensing is still limited by the availability of the large training sets it requires. The lack of publicly available large datasets with the required variability in terms of landscapes and seasons pushes researchers to simulate their own datasets by means of downsampling. This may impair the applicability of the trained model on real-world data at the target input resolution. This paper presents SEN2VENµS, an open-data licensed dataset composed of 10 m and 20 m cloud-free surface reflectance patches from Sentinel-2, with their reference spatially registered surface reflectance patches at 5 m resolution acquired on the same day by the VENµS satellite. This dataset covers 29 locations on earth with a total of 132,955 patches of 256 × 256 pixels at 5 m resolution and can be used for the training and comparison of super-resolution algorithms to bring the spatial resolution of 8 of the Sentinel-2 bands up to 5 m.
There was an error in the original publication [...]
Boosted by the progress in deep learning, Single Image Super-Resolution (SISR) has gained a lot of interest in the Remote Sensing community, who sees it as an oportunity to compensate for satellite's ever-limited spatial resolution with respect to end users needs. While there has been a great amount of work on network architures in the latest years, deep learning based SISR in remote sensing is still limited by the availability of the large training sets it requires. The lack of publicly available large datasets with the required variability in terms of landscapes and seasons pushes researchers to simulate their own dataset by means of downsampling. This may impair the applicability of the trained model on real world data at the target input resolution. In this paper, we propose an open-data licenced dataset composed of 10m and 20m cloud-free surface reflectance patches from Sentinel-2, with their reference spatially-registered surface reflectance patches at 5 meter resolution acquired on the same day by the VENµS satellite. This dataset covers 29 locations on earth with a total of 132 955 patches of 256x256 pixels at 5 meters resolution, and can be used for the training of super-resolution algorithms to bring the spatial resolution of 8 of the Sentinel-2 bands down to 5 meters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.