Piezoelectric AT-cut quartz resonators immersed in aqueous media, coated with cross-linked films of the random copolymer -{ 1), exhibit large frequency changes when the pH is changed in the vicinity of the isoelectric point of the polymer film. The frequency changes are attributed to changes in the viscoelastic properties of the films that occur during phase transitions between the isoelectric form and the cationic polymer (l-NMe2H+) present at low pH or the anionic polymer (1-C02") present at high pH. These phase transitions are accompanied by dramatic changes in acoustic energy attenuation, film thickness changes, and film surface energy, as indicated by acoustic impedance analysis, phase measurement interferometric microscopy, and contact angle measurements. The results are consistent with pH-dependent segregation of the isolectric and ionic phases within the bulk and between the bulk and the surface. The unique pH-sensing capabilities of the coated resonators, combined with their robustness, ease of fabrication, and low cost, provide a convenient approach for the measurement of "threshold" pH changes. Real-time measurements of enzymatic activity and microbe metabolism are demonstrated as examples of potential applications of these sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.