Blind image inpainting involves two critical aspects, i.e., "where to inpaint" and "how to inpaint". Knowing "where to inpaint" can eliminate the interference arising from corrupted pixel values; a good "how to inpaint" strategy yields high-quality inpainted results robust to various corruptions. In existing methods, these two aspects usually lack explicit and separate consideration. This paper fully explores these two aspects and proposes a self-prior guided inpainting network (SIN). The self-priors are obtained by detecting semantic-discontinuous regions and by predicting global semantic structures of the input image. On the one hand, the self-priors are incorporated into the SIN, which enables the SIN to perceive valid context information from uncorrupted regions and to synthesize semantic-aware textures for corrupted regions. On the other hand, the self-priors are reformulated to provide a pixel-wise adversarial feedback and a high-level semantic structure feedback, which can promote the semantic continuity of inpainted images. Experimental results demonstrate that our method achieves state-of-the-art performance in metric scores and in visual quality. It has an advantage over many existing methods that assume "where to inpaint" is known in advance. Extensive experiments on a series of related image restoration tasks validate the effectiveness of our method in obtaining high-quality inpainting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.