Unilaterally nephrectomized rats (UNx) have higher glomerular capillary pressure (P) that can cause significant glomerular injury in the remnant kidney. P is controlled by the ratio of afferent (Af-Art) and efferent arteriole resistance. Af-Art resistance in turn is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to increased NaCl in the macula densa; and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation in response to an increase in NaCl transport in the connecting tubule via the epithelial sodium channel (ENaC). Resetting of TGF post-UNx can allow systemic pressure to be transmitted to the glomerulus and cause renal damage, but the mechanism behind this resetting is unclear. Since CTGF is an Af-Art dilatory mechanism, we hypothesized that CTGF is increased after UNx and contributes to TGF resetting. To test this hypothesis, we performed UNx in Sprague-Dawley (8) rats. Twenty-four hours after surgery, we performed micropuncture of individual nephrons and measured stop-flow pressure (P). P is an indirect measurement of P. Maximal TGF response at 40 nl/min was 8.9 ± 1.24 mmHg in sham-UNx rats and 1.39 ± 1.02 mmHg in UNx rats, indicating TGF resetting after UNx. When CTGF was inhibited with the ENaC blocker benzamil (1 μM/l), the TGF response was 12.29 ± 2.01 mmHg in UNx rats and 13.03 ± 1.25 mmHg in sham-UNx rats, indicating restoration of the TGF responses in UNx. We conclude that enhanced CTGF contributes to TGF resetting after UNx.
Systemic lupus erythematosus (SLE) is an autoimmune disease with a high prevalence of hypertension. NZBWF1 (SLE‐Hyp) mice develop hypertension that can be prevented by modulating T cells. The peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (Ac‐SDKP) decreases renal damage and improves renal function in a model of SLE without hypertension (MRL/lpr). However, it is not known whether Ac‐SDKP prevents hypertension in NZBWF1 mice. We hypothesized that in SLE‐Hyp, Ac‐SDKP prevents hypertension and renal damage by modulating T cells. Animals were divided into four groups: (1) control + vehicle, (2) control + Ac‐SDKP, (3) SLE + vehicle, and (4) SLE + Ac‐SDKP. Systolic blood pressure (SBP), albuminuria, renal fibrosis, and T‐cell phenotype were analyzed. SBP was higher in SLE compared to control mice and was not decreased by Ac‐SDKP treatment. Half of SLE mice developed an acute and severe form of hypertension accompanied by albuminuria followed by death. Ac‐SDKP delayed development of severe hypertension, albuminuria, and early mortality, but this delay did not reach statistical significance. Ac‐SDKP prevented glomerulosclerosis, but not interstitial fibrosis in SLE‐Hyp mice. SLE‐Hyp mice showed a decrease in helper and cytotoxic T cells as well as an increase in double negative lymphocytes and T helper 17 cells, but these cells were unaffected by Ac‐SDKP. In conclusion, Ac‐SDKP prevents kidney damage, without affecting blood pressure in an SLE animal model. However, during the acute relapse of SLE, Ac‐SDKP might also delay the manifestation of an acute and severe form of hypertension leading to early mortality. Ac‐SDKP is a potential tool to treat renal damage in SLE‐Hyp mice.
Background: Pulmonary arterial hypertension (PAH) is a progressive proliferative vasculopathy associated with mechanical and electrical changes, culminating in increased vascular resistance, right ventricular (RV) failure, and death. With a main focus on invasive tools, there has been an underutilization of echocardiography, electrocardiography, and biomarkers to non-invasively assess the changes in myocardial and pulmonary vascular structure and function during the course of PAH.Methods: A SU5416-hypoxia rat model was used for inducing PAH. Biventricular functions were measured using transthoracic two-dimensional (2D) echocardiography/Doppler (echo/Doppler) at disease onset (0 week), during progression (3 weeks), and establishment (5 weeks). Similarly, electrocardiography was performed at 0, 3, and 5 weeks. Invasive hemodynamic measurements and markers of cardiac injury in plasma were assessed at 0, 3, and 5 weeks.Results: Increased RV systolic pressure (RVSP) and rate of isovolumic pressure rise and decline were observed at 0, 3, and 5 weeks in PAH animals. EKG showed a steady increase in QT-interval with progression of PAH, whereas P-wave height and RS width were increased only during the initial stages of PAH progression. Echocardiographic markers of PAH progression and severity were also identified. Three echocardiographic patterns were observed: a steady pattern (0–5 weeks) in which echo parameter changed progressively with severity [inferior vena cava (IVC) expiratory diameter and pulmonary artery acceleration time (PAAT)], an early pattern (0–3 weeks) where there is an early change in parameters [RV fractional area change (RV-FAC), transmitral flow, left ventricle (LV) output, estimated mean PA pressure, RV performance index, and LV systolic eccentricity index], and a late pattern (3–5 weeks) in which there is only a late rise at advanced stages of PAH (LV diastolic eccentricity index). RVSP correlated with PAAT, PAAT/PA ejection times, IVC diameters, RV-FAC, tricuspid systolic excursion, LV systolic eccentricity and output, and transmitral flow. Plasma myosin light chain (Myl-3) and cardiac troponin I (cTnI) increased progressively across the three time points. Cardiac troponin T (cTnT) and fatty acid-binding protein-3 (FABP-3) were significantly elevated only at the 5-week time point.Conclusion: Distinct electrocardiographic and echocardiographic patterns along with plasma biomarkers were identified as useful non-invasive tools for monitoring PAH progression.
It has been reported that SHR rats receiving angiotensin converting enzyme (ACE) inhibitor Captopril decrease blood pressure (BP) in at least two generation after the treatment was stopped. A decreased response to an intracerebroventricular infusion angiotensin I and angiotensin II in treated animals and their offspring was reported; however there is no reported mechanism that explains the changes observed in the untreated offspring of the Captopril treated animals. We hypothesize that captopril reduces angiotensin II type 1 receptor (AT1R) expression in CNS of the offspring of SHR rats treated with captopril. Animal groups are as follows: control animals, captopril treated animals, offspring of the control animals, offspring of the treated animals where the mother was removed from the treatment immediately after giving birth and Offspring of treated animals where the mother was removed from the treatment at weaning. BP was measured by intra-arterial method and Tail cuff. AT1R expression was measured in brain tissue using the posterior wall of the forth ventricle, as well as the top half of the brain stem. BP was different between treated groups and their offspring vs. control (Table 1). AT1R expression was significantly reduced in both offspring groups of the treated animals, when compared to control (Table 1). Therefore we conclude that captopril reduces blood pressure in the offspring of captopril treated SHR rats and that associates with a decrease in AT1R expression in CNS. Further research is necessary to determine the possible epigenetic mechanisms involved in AT1R reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.