During development, the healthy human brain constructs a host of large-scale, distributed, function-critical neural networks. Neurodegenerative diseases have been thought to target these systems, but this hypothesis has not been systematically tested in living humans. We used network-sensitive neuroimaging methods to show that five different neurodegenerative syndromes cause circumscribed atrophy within five distinct healthy human intrinsic functional connectivity networks. We further discovered a direct link between intrinsic connectivity and gray matter structure. Across healthy individuals, nodes within each functional network exhibited tightly correlated gray matter volumes. The findings suggest that human neural networks can be defined by synchronous baseline activity, a unified corticotrophic fate, and selective vulnerability to neurodegenerative illness. Future studies may clarify how these complex systems are assembled during development and undermined by disease.
Resting-state or intrinsic connectivity network functional magnetic resonance imaging provides a new tool for mapping large-scale neural network function and dysfunction. Recently, we showed that behavioural variant frontotemporal dementia and Alzheimer's disease cause atrophy within two major networks, an anterior 'Salience Network' (atrophied in behavioural variant frontotemporal dementia) and a posterior 'Default Mode Network' (atrophied in Alzheimer's disease). These networks exhibit an anti-correlated relationship with each other in the healthy brain. The two diseases also feature divergent symptom-deficit profiles, with behavioural variant frontotemporal dementia undermining social-emotional function and preserving or enhancing visuospatial skills, and Alzheimer's disease showing the inverse pattern. We hypothesized that these disorders would exert opposing connectivity effects within the Salience Network (disrupted in behavioural variant frontotemporal dementia but enhanced in Alzheimer's disease) and the Default Mode Network (disrupted in Alzheimer's disease but enhanced in behavioural variant frontotemporal dementia). With task-free functional magnetic resonance imaging, we tested these ideas in behavioural variant frontotemporal dementia, Alzheimer's disease and healthy age-matched controls (n = 12 per group), using independent component analyses to generate group-level network contrasts. As predicted, behavioural variant frontotemporal dementia attenuated Salience Network connectivity, most notably in frontoinsular, cingulate, striatal, thalamic and brainstem nodes, but enhanced connectivity within the Default Mode Network. Alzheimer's disease, in contrast, reduced Default Mode Network connectivity to posterior hippocampus, medial cingulo-parieto-occipital regions and the dorsal raphe nucleus, but intensified Salience Network connectivity. Specific regions of connectivity disruption within each targeted network predicted intrinsic connectivity enhancement within the reciprocal network. In behavioural variant frontotemporal dementia, clinical severity correlated with loss of right frontoinsular Salience Network connectivity and with biparietal Default Mode Network connectivity enhancement. Based on these results, we explored whether a combined index of Salience Network and Default Mode Network connectivity might discriminate between the three groups. Linear discriminant analysis achieved 92% clinical classification accuracy, including 100% separation of behavioural variant frontotemporal dementia and Alzheimer's disease. Patients whose clinical diagnoses were supported by molecular imaging, genetics, or pathology showed 100% separation using this method, including four diagnostically equivocal 'test' patients not used to train the algorithm. Overall, the findings suggest that behavioural variant frontotemporal dementia and Alzheimer's disease lead to divergent network connectivity patterns, consistent with known reciprocal network interactions and the strength and deficit profiles of the two disorders. ...
Summary Neurodegenerative diseases target large-scale neural networks. Four competing mechanistic hypotheses have been proposed to explain network-based disease patterning: nodal stress, transneuronal spread, trophic failure, and shared vulnerability. Here, we used task-free fMRI to derive the healthy intrinsic connectivity patterns seeded by brain regions vulnerable to any of five distinct neurodegenerative diseases. These data enabled us to investigate how intrinsic connectivity in health predicts region-by-region vulnerability to disease. For each illness, specific regions emerged as critical network “epicenters” whose normal connectivity profiles most resembled the disease-associated atrophy pattern. Graph theoretical analyses in healthy subjects revealed that regions with higher total connectional flow and, more consistently, shorter functional paths to the epicenters, showed greater disease-related vulnerability. These findings best fit a transneuronal spread model of network-based vulnerability. Molecular pathological approaches may help clarify what makes each epicenter vulnerable to its targeting disease and how toxic protein species travel between networked brain structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.