Biodiesel is a renewable fuel mainly produced by transesterification of oils and fats that can be used as a transportation fuel, solvent and for energy generation with the potential to reduce the emissions of CO 2 , SO 2 , CO and HC, compared to fossil fuels. In this work, the kinetic behavior of triglycerides by different transesterification technologies is investigated through a critical review of the kinetic models reported in the study with the aim to establish a trend of the reaction mechanisms and the main variable effects and to further optimize the chemical process. The study of the transesterification reaction kinetics is performed for every type of transesterification, that is, homogeneous, heterogeneous, enzymatic and supercritical. The kinetic models are thus reviewed by describing the way they have evolved and how they can be used for process simulation and optimization. This chapter is divided in a study of the state of the art, an analysis and synthesis of research results, and an application for further optimization of the biodiesel production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.