Nuclear localization signals (NLS) are generally short peptides that act as a signal fragment that mediates the transport of proteins from the cytoplasm into the nucleus. This NLS-dependent protein recognition, a process necessary for cargo proteins to pass the nuclear envelope through the nuclear pore complex, is facilitated by members of the importin superfamily. Here, we summarized the types of NLS, focused on the recently reported related proteins containing nuclear localization signals, and briefly summarized some mechanisms that do not depend on nuclear localization signals into the nucleus.
α-Farnesene, a type of acyclic sesquiterpene, is an important raw material in agriculture, aircraft fuel, and the chemical industry. In this study, we constructed an efficient α-farnesene-producing yeast cell factory by combining enzyme and metabolic engineering strategies. First, we screened different plants for α-farnesene synthase (AFS) with the best activity and found that AFS from Camellia sinensis (CsAFS) exhibited the most efficient α-farnesene production in Saccharomyces cerevisiae 4741. Second, the metabolic flux of the mevalonate pathway was increased to improve the supply of the precursor farnesyl pyrophosphate. Third, inducing site-directed mutagenesis in CsAFS, the CsAFSW281C variant was obtained, which considerably increased α-farnesene production. Fourth, the N-terminal serine–lysine–isoleucine–lysine (SKIK) tag was introduced to construct the SKIK∼CsAFSW281C variant, which further increased α-farnesene production to 2.8 g/L in shake-flask cultures. Finally, the α-farnesene titer of 28.3 g/L in S. cerevisiae was obtained by fed-batch fermentation in a 5 L bioreactor.
Extracellular vesicles are small vesicles with a diameter of 30–150 nm that are actively secreted by eukaryotic cells and play important roles in intercellular communication, immune responses, and tumorigenesis. Previous studies have shown that extracellular vesicles are involved in the process of Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. However, changes in the protein content of extracellular vesicles elicited by S. Typhimurium infection have not been determined. Here, we extracted the extracellular vesicles with high purity from S. Typhimurium-infected Henle-407 cells, a kind of human intestinal epithelial cells, by ultracentrifugation combined with an extracellular vesicles purification kit, and analyzed their protein composition using label-free relative quantitative proteomics. The extracted extracellular vesicles exhibited an oval vesicular structure under electron microscopy, with a mean diameter of 140.4 ± 32.4 nm. The exosomal marker proteins CD9, CD63, and HSP70 were specifically detected. Compared with the uninfected group, nearly 1,234 specifically loaded proteins were uncovered in S. Typhimurium-infected Henle-407 cells. Among them were 409 S. Typhimurium-derived specific proteins, indicating a significant alteration in protein composition of extracellular vesicles by S. Typhimurium infection. Notably, these proteins included 75 secretory proteins and over 300 non-secretory proteins of S. Typhimurium, implicating novel pathways for bacterial protein delivery, although it remains unclear if their loading into extracellular vesicles is active or passive. To investigate the roles of these extracellular proteins, we exemplified the function of SopB, a well-known T3SS effector protein, and showed that the extracellular SopB could be taken up by RAW264.7 macrophages, activating the phosphorylation of Akt. This study provides new insights into the mechanism of Salmonella infection through extracellular vesicles that transport virulence proteins to uninfected neighboring cells to facilitate further infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.