Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotation of matrix assisted laser desorption/ionization imaging datasets to assess tissue metabolic heterogeneity in human lung diseases. Using metabolic features identified from this pipeline, we hypothesize that metabolic channeling between glycogen and N-linked glycans is a critical metabolic process favoring pulmonary fibrosis progression. To test our hypothesis, we induced pulmonary fibrosis in two different mouse models with lysosomal glycogen utilization deficiency. Both mouse models displayed blunted N-linked glycan levels and nearly 90% reduction in endpoint fibrosis when compared to WT animals. Collectively, we provide conclusive evidence that lysosomal utilization of glycogen is required for pulmonary fibrosis progression. In summary, our study provides a roadmap to leverage spatial metabolomics to understand foundational biology in pulmonary diseases.
Objectives: The presence of nodal metastases in patients with papillary thyroid carcinoma (PTC) has both staging and treatment implications. However, lymph nodes are often not removed during thyroidectomy. Prior work has demonstrated the capability of artificial intelligence (AI) to predict the presence of nodal metastases in PTC based on the primary tumor histopathology alone. This study aimed to replicate these results with multi-institutional data. Methods: Cases of conventional PTC were identified from the records of 2 large academic institutions. Only patients with complete pathology data, including at least 3 sampled lymph nodes, were included in the study. Tumors were designated “positive” if they had at least 5 positive lymph node metastases. First, algorithms were trained separately on each institution’s data and tested independently on the other institution’s data. Then, the data sets were combined and new algorithms were developed and tested. The primary tumors were randomized into 2 groups, one to train the algorithm and another to test it. A low level of supervision was used to train the algorithm. Board-certified pathologists annotated the slides. HALO-AI convolutional neural network and image software was used to perform training and testing. Receiver operator characteristic curves and the Youden J statistic were used for primary analysis. Results: There were 420 cases used in analyses, 45% of which were negative. The best performing single institution algorithm had an area under the curve (AUC) of 0.64 with a sensitivity and specificity of 65% and 61% respectively, when tested on the other institution’s data. The best performing combined institution algorithm had an AUC of 0.84 with a sensitivity and specificity of 68% and 91% respectively. Conclusion: A convolutional neural network can produce an accurate and robust algorithm that is capable of predicting nodal metastases from primary PTC histopathology alone even in the setting of multi-institutional data.
Adenocarcinoma with enteroblastic differentiation is a rare and underrecognised malignancy that can occur in the gastrointestinal tract. It has been reported in the stomach and gastroesophageal (GE) junction, and based on limited reports, the prognosis appears poor. 1,2 However, given the rarity of this entity, it is not yet char-How to cite this article: Ferreira JE, Mbagwu E, Lee EY, Shelman NR, Allison DB. Cytopathological features of gastroesophageal junction adenocarcinoma with enteroblastic differentiation and histopathological correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.