Magnetotelluric exploration has shown that the middle and lower crust is anomalously conductive across most of the north-to-south width of the Tibetan plateau. The integrated conductivity (conductance) of the Tibetan crust ranges from 3000 to greater than 20,000 siemens. In contrast, stable continental regions typically exhibit conductances from 20 to 1000 siemens, averaging 100 siemens. Such pervasively high conductance suggests that partial melt and/or aqueous fluids are widespread within the Tibetan crust. In southern Tibet, the high-conductivity layer is at a depth of 15 to 20 kilometers and is probably due to partial melt and aqueous fluids in the crust. In northern Tibet, the conductive layer is at 30 to 40 kilometers and is due to partial melting. Zones of fluid may represent weaker areas that could accommodate deformation and lower crustal flow.
Vulnerability assessments of the risk posed by geomagnetically induced currents (GICs) to power transmission grids benefit from accurate knowledge of the geomagnetic field variations at each node of the grid, the Earth's geoelectrical structures beneath them, and the topology and relative resistances of the grid elements in the precise instant of a storm. The results of previous analyses on the threat posed by GICs to the Spanish 400 kV grid are improved in this study by resorting to different strategies to progress in the three aspects identified above. First, although at midlatitude regions the source fields are rather uniform, we have investigated the effect of their spatial changes by interpolating the field from the records of several close observatories with different techniques. Second, we have performed a magnetotelluric (MT) sounding in the vicinity of one of the transformers where GICs are measured to determine the geoelectrical structure of the Earth, and we have identified the importance of estimating the MT impedance tensor when predicting GIC, especially where the effect of lateral heterogeneities is important. Finally, a sensitivity analysis to network changes has allowed us to assess the reliability of both the information about the network topology and resistances, and the assumptions made when all the details or the network status are not available. In our case, the most essential issue to improve the coincidence between model predictions and actual observations came from the use of realistic geoelectric information involving local MT measurements.
Magnetotelluric studies of the Trans-Hudson orogen over the last two decades, prompted by the discovery of a significant conductivity anomaly beneath the North American Central Plains (NACP), from over 300 sites yield an extensive database for interrogation and enable three-dimensional information to be obtained about the geometry of the orogen from southern North Dakota to northern Saskatchewan. The NACP anomaly is remarkable in its continuity along strike, testimony to along-strike similarity of orogenic processes. Where bedrock is exposed, the anomaly can be associated with sulphides that were metamorphosed during subduction and compression and penetratively emplaced deep within the crust of the internides of the orogen to the boundary of the Hearne margin. A new result from this compilation is the discovery of an anomaly within the upper mantle beginning at depths of ~80100 km. This lithospheric mantle conductor has electrical properties similar to those for the central Slave craton mantle conductor, which lies directly beneath the major diamond-producing Lac de Gras kimberlite field. While the Saskatchewan mantle conductor does not directly underlie the Fort à la Corne kimberlite, which is associated with the Sask craton, the spatial correspondence is close.
Summary Interpretation of magnetotelluric (MT) data for three‐dimensional (3‐D) regional conductivity structures remains uncommon, and two‐dimensional (2‐D) models are often considered an adequate approach. In this paper we examine 2‐D interpretation of 3‐D data by considering the synthetic responses of a 3‐D structure chosen specifically to highlight the advantages and limitations of 2‐D interpretation. 2‐D models were obtained from inversion of the synthetic 3‐D data set with different conditions (noise and distortion) applied to the data. We demonstrate the importance of understanding galvanic distortion of the data and show how 2‐D inversion is improved when the regional data are corrected prior to modelling. When the 3‐D conductive structure is located below the profile, the models obtained suggest that the effects of finite strike are not significant if the structure has a strike extent greater than about one‐half of a skin depth. In this case the use of only TM‐mode data determined better the horizontal extent of the 3‐D anomaly. When the profiles are located away from the 3‐D conductive structure the use of only TM‐mode data can imagine phantom conductive structures below the profile, in this case the use of both polarizations produced a better determination of the subsurface structures. It is important to note that the main structures are identified in all the cases considered here, although in some cases the large data misfit would cause scepticism about features of the models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.