A crucial requirement for most engineering materials is the excellent balance of strength and toughness. By mimicking the hybrid hierarchical structure in nacre, a kind of nacre-like paper based on binary hybrid graphene oxide (GO)/sodium alginate (SA) building blocks has been successfully fabricated. Systematic evaluation for the mechanical property in different (dry/wet) environment/after thermal annealing shows a perfect combination of high strength and toughness. Both of the parameters are nearly many-times higher than those of similar materials because of the synergistic strengthening/toughening enhancement from the binary GO/SA hybrids. The successful fabrication route offers an excellent approach to design advanced strong integrated nacre-like composite materials, which can be applied in tissue engineering, protection, aerospace, and permeable membranes for separation and delivery.
In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.
Highly regular NaTi2 (PO4 )3 nanocubes with synergistic nanocoatings of rutile TiO2 and carbon are prepared as an electrode material for sodium-ion batteries. It exhibits a high rate and ultralong life performance simultaneously, and a capacity retention of 89.3% after 10 000 cycles is achieved.
Photovoltaic conversion of solar energy into electricity is an alternative way to use renewable energy for sustainable energy production. The great demand of low-cost and efficient solar cells inspires research on solution-processable light-harvesting materials. Antimony trisulfide (Sb 2 S 3) is a promising light-harvester for photovoltaic purposes. Here we report on the in situ grown monolayer of preferentially oriented, large Sb 2 S 3 single-crystalline cuboids on a polycrystalline titania (TiO 2) nanoparticle film. A facile, oriented seed-assisted solutionprocessing method is used, providing the Sb 2 S 3 /TiO 2-based bulk/nano-planar heterojunction with a preferred structure for efficient planar solar cells. An orientation-competing-epitaxial nucleation/growth mechanism is proposed for understanding the growth of the Sb 2 S 3 singlecrystalline cuboids. With an organic hole transporting material, the stable solar cell of the heterojunction yields a power conversion efficiency of 5.15% (certified as 5.12%). It is found that the [221]-oriented Sb 2 S 3 cuboids provide highly effective charge transport channels inside the Sb 2 S 3 layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.