A fundamental challenge in understanding cardiac biology and disease is that the remarkable heterogeneity in cell type composition and functional states have not been well characterized at single-cell resolution in maturing and diseased mammalian hearts. Massively parallel single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool to address these questions by interrogating the transcriptome of tens of thousands of nuclei isolated from fresh or frozen tissues. snRNA-seq overcomes the technical challenge of isolating intact single cells from complex tissues, including the maturing mammalian hearts; reduces biased recovery of easily dissociated cell types; and minimizes aberrant gene expression during the whole-cell dissociation. Here we applied sNucDrop-seq, a droplet microfluidics-based massively parallel snRNA-seq method, to investigate the transcriptional landscape of postnatal maturing mouse hearts in both healthy and disease states. By profiling the transcriptome of nearly 20,000 nuclei, we identified major and rare cardiac cell types and revealed significant heterogeneity of cardiomyocytes, fibroblasts, and endothelial cells in postnatal developing hearts. When applied to a mouse model of pediatric mitochondrial cardiomyopathy, we uncovered profound cell type-specific modifications of the cardiac transcriptional landscape at single-nucleus resolution, including changes of subtype composition, maturation states, and functional remodeling of each cell type. Furthermore, we employed sNucDrop-seq to decipher the cardiac cell type-specific gene regulatory network (GRN) of GDF15, a heart-derived hormone and clinically important diagnostic biomarker of heart disease. Together, our results present a rich resource for studying cardiac biology and provide new insights into heart disease using an approach broadly applicable to many fields of biomedicine.
Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood–brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1−/−) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1−/− mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b+ cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1−/− mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFRα signaling in the NVU and controlling BBB permeability.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-017-1749-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.