Human utilization of the mulberry–silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species’ spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant–herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants.
Long non-coding RNAs (lncRNAs), which represent a new frontier in molecular biology, play important roles in regulating gene expression at epigenetic, transcriptional and post-transcriptional levels. More and more lncRNAs have been found to play important roles in normal cell physiological activities, and participate in the development of varieties of tumors and other diseases. Previously, we have only been able to determine the function of lncRNAs through multiple mechanisms, including genetic imprinting, chromatin remodeling, splicing regulation, mRNA decay, and translational regulation. Application of technological advances to research into the function of lncRNAs is extremely important. The major tools for exploring lncRNAs include microarrays, RNA sequencing (RNA-seq), Northern blotting, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), RNA interference (RNAi), RNA-binding protein immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), crosslinking-immunopurification (CLIP), and bioinformatic prediction. In this review, we highlight the functions of lncRNAs, and advanced methods to research lncRNA-protein interactions.
Maternally Expressed Gene 3 (MEG3) encodes a lncRNA which is suggested to function as a tumor suppressor. Previous studies suggested that MEG3 functioned through activation of p53, however, the functional properties of MEG3 remain obscure and their relevance to human diseases is under continuous investigation. Here, we try to illuminate the relationship of MEG3 and p53, and the consequence in hepatoma cells. We find that transfection of expression construct of MEG3 enhances stability and transcriptional activity of p53. Deletion analysis of MEG3 confirms that full length and intact structure of MEG3 are critical for it to activate p53-mediated transactivation. Interestingly, our results demonstrate for the first time that MEG3 can interact with p53 DNA binding domain and various p53 target genes are deregulated after overexpression of MEG3 in hepatoma cells. Furthermore, results of qRT-PCR have shown that MEG3 RNA is lost or reduced in the majority of HCC samples compared with adjacent non-tumorous samples. Ectopic expression of MEG3 in hepatoma cells significantly inhibits proliferation and induces apoptosis. In conclusion, our data demonstrates that MEG3 functions as a tumor suppressor in hepatoma cells through interacting with p53 protein to activate p53-mediated transcriptional activity and influence the expression of partial p53 target genes.
Highlights d Astin C impairs cGAS-STING signaling and the inflammatory responses d Astin C attenuates autoinflammatory responses in Trex1 À/À cells and disease model d Astin C specifically binds to STING d Astin C prevents the recruitment of IRF3 onto STING signalosome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.