Background
The growth and development of muscle stem cells (MuSCs) are significant events known to affect muscle plasticity, disease, meat production, and meat quality, which involves the types and functions of mRNA and non-coding RNA. Here, MuSCs were cultured from Guangxi fetal cattle. RNA sequencing was used to analyze the RNA expression of mRNA and non-coding RNAs during the cell proliferation and differentiation phases.
Results
Two thousand one hundred forty-eight mRNAs and 888 non-coding RNAs were differentially expressed between cell proliferation and differentiation phases, including 113 miRNAs, 662 lncRNAs, and 113 circRNAs. RT-qPCR verified the differential expression levels of mRNAs and non-coding RNAs, and the differentially expressed circUBE2Q2 was subsequently characterized. Expression profile analysis revealed that circUBE2Q2 was abundant in muscle tissues and intramuscular fat. The expression of cricUBE2Q2 was also significantly upregulated during MuSCs myogenic differentiation and SVFs adipogenic differentiation and decreased with age in cattle muscle tissue. Finally, the molecular mechanism of circUBE2Q2 regulating MuSCs function that affects skeletal muscle development was investigated. The results showed that circUBE2Q2 could serve as a sponge for miR-133a, significantly promoting differentiation and apoptosis of cultured MuSCs, and inhibiting proliferation of MuSCs.
Conclusions
CircUBE2Q2 is associated with muscle growth and development and induces MuSCs myogenic differentiation through sponging miR-133a. This study will provide new clues for the mechanisms by which mRNAs and non-coding RNAs regulate skeletal muscle growth and development, affecting muscle quality and diseases.
Follicular atresia is one of the main factors limiting the reproductive power of domestic animals. At present, the molecular mechanisms involved in porcine follicular atresia at the metabolic level remain unclear. In this study, we divided the follicles of Bama Xiang pigs into healthy follicles (HFs) and atretic follicles (AFs) based on the follicle morphology. The expression of genes related to atresia in granulosa cells (GCs) and the concentration of hormones in the follicular fluid (FF) from HFs and AFs were detected. We then used liquid chromatography–mass spectrometry-based non-targeted metabolomic approach to analyze the metabolites in the FF from HFs and AFs. The results showed that the content of estradiol was significantly lower in AFs than in HFs, whereas that of progesterone was significantly higher in AFs than that in HFs. The expression of BCL2, VEGFA, and CYP19A1 was significantly higher in HFs than in AFs. In contrast, the expression of BAX and CASPASE3 was significantly lower in HFs. A total of 18 differential metabolites (DMs) were identified, including phospholipids, bioactive substances, and amino acids. The DMs were involved in 12 metabolic pathways, including arginine biosynthesis and primary bile acid biosynthesis. The levels of eight DMs were higher in the HF group than those in the AF group (p < 0.01), and those of 10 DMs were higher in the AF group than those in the HF group (p < 0.01). These findings indicate that the metabolic characteristics of porcine AFs are lower levels of lipids such as phospholipids and higher levels of amino acids and bile acids than those in HFs. Disorders of amino acid metabolism and cholic acid metabolism may contribute to porcine follicular atresia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.