The therapeutic benefits of repetitive transcranial magnetic stimulation (rTMS) combined with rehabilitation therapy on recovery after stroke have not been fully elucidated. This study aimed to explore the therapeutic effects of rTMS followed by aerobic exercise on neuroplasticity and recovery of motor function in a rat model of permanent middle cerebral artery occlusion (MCAO). Rats were randomized into sham operation (N = 10, sham op), MCAO (N = 10, control group), rTMS (N = 10, MCAO and rTMS therapy), and combination groups (N = 10, MCAO and combination therapy). High-frequency rTMS (10 Hz) was applied on the ipsilesional forepaw motor cortex, and aerobic exercise training on the rotarod was performed for two weeks. The rotarod and Garcia tests were conducted to evaluate changes in behavioral function. Motor evoked potentials (MEPs) were used to evaluate electrophysiological changes. Stroke severity was assessed using infarction volume measurement. Neuronal recovery was explored with western blot for brain-derived neurotrophic factor (BDNF) pathway proteins. Compared with control therapy, combination therapy was significantly more effective than rTMS therapy for improving function on the rotarod test (p = 0.08), Garcia test (p = 0.001), and MEP amplitude (p = 0.001) In conclusion, combination therapy may be a potential treatment to promote recovery of motor function and neuroplasticity in stroke patients.
Twenty-seven healthy subjects were randomly assigned to 1 of 2 equal groups : (1) experimental group (active stimulation) and (2) control group (sham stimulation). A total of 10 Hz repetitive transcranial magnetic stimulation was delivered to the left dorsolateral prefrontal cortex at 80% of the resting motor threshold. The reaction time of the correct response, omission error, and commission error of the auditory and visual continuous performance test scores were measured. The motor evoked potentials, resting motor threshold, short-interval intracortical inhibition, and intracortical facilitation was recorded in the right first dorsal interosseous muscle to determine motor cortex excitability. The reaction time and commission error of the auditory continuous performance test were reduced significantly after 10 Hz repetitive transcranial magnetic stimulation (P < 0.05). Resting motor threshold and short-interval intracortical inhibition was significantly decreased after active repetitive transcranial magnetic stimulation (P < 0.05), with no changes in the latency and amplitude of the motor evoked potentials and intracortical facilitation. In conclusion, high-frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex is shown to improve the attentional function and may be simultaneously associated with changes in neurophysiological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.