Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagERepresentation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M1 , a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from https://github.com/THU-KEG/KEPLER.
Entity alignment typically suffers from the issues of structural heterogeneity and limited seed alignments. In this paper, we propose a novel Multi-channel Graph Neural Network model (MuGNN) to learn alignment-oriented knowledge graph (KG) embeddings by robustly encoding two KGs via multiple channels. Each channel encodes KGs via different relation weighting schemes with respect to self-attention towards KG completion and cross-KG attention for pruning exclusive entities respectively, which are further combined via pooling techniques. Moreover, we also infer and transfer rule knowledge for completing two KGs consistently. MuGNN is expected to reconcile the structural differences of two KGs, and thus make better use of seed alignments. Extensive experiments on five publicly available datasets demonstrate our superior performance (5% Hits@1 up on average). Source code and data used in the experiments can be accessed at https:// github.com/thunlp/MuGNN.
We release an open toolkit for knowledge embedding (OpenKE), which provides a unified framework and various fundamental models to embed knowledge graphs into a continuous low-dimensional space. OpenKE prioritizes operational efficiency to support quick model validation and large-scale knowledge representation learning. Meanwhile, OpenKE maintains sufficient modularity and extensibility to easily incorporate new models into the framework. Besides the toolkit, the embeddings of some existing large-scale knowledge graphs pre-trained by OpenKE are also available, which can be directly applied for many applications including information retrieval, personalized recommendation and question answering. The toolkit, documentation, and pre-trained embeddings are all released on http://openke.thunlp.org/.
We aim to dismantle the prevalent black-box neural architectures used in complex visual reasoning tasks, into the proposed eXplainable and eXplicit Neural Modules (XNMs), which advance beyond existing neural module networks towards using scene graphs -objects as nodes and the pairwise relationships as edges -for explainable and explicit reasoning with structured knowledge. XNMs allow us to pay more attention to teach machines how to "think", regardless of what they "look". As we will show in the paper, by using scene graphs as an inductive bias, 1) we can design XNMs in a concise and flexible fashion, i.e., XNMs merely consist of 4 meta-types, which significantly reduce the number of parameters by 10 to 100 times, and 2) we can explicitly trace the reasoning-flow in terms of graph attentions. XNMs are so generic that they support a wide range of scene graph implementations with various qualities. For example, when the graphs are detected perfectly, XNMs achieve 100% accuracy on both CLEVR and CLEVR CoGenT, establishing an empirical performance upper-bound for visual reasoning; when the graphs are noisily detected from real-world images, XNMs are still robust to achieve a competitive 67.5% accuracy on VQAv2.0, surpassing the popular bag-of-objects attention models without graph structures. * The work was done when Jiaxin Shi was an intern at Nanyang Technological University.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.