Cancer cachexia is a metabolic syndrome with alterations in gene regulatory networks that consequently lead to skeletal muscle wasting. Integrating microRNAs-mRNAs omics profiles offers an opportunity to understand transcriptional and posttranscriptional regulatory networks underlying muscle wasting. Here, we used RNA sequencing to simultaneously integrate and explore microRNAs and mRNAs expression profiles in the tibialis anterior (TA) muscles of the Lewis Lung Carcinoma (LLC) model of cancer cachexia. We found 1,008 mRNAs and 18 microRNAs differentially expressed in cachectic mice compared with controls. Although our transcriptomic analysis demonstrated a high heterogeneity in mRNA profiles of cachectic mice, we identified a reduced number of differentially expressed genes that were uniformly regulated within cachectic muscles. This set of uniformly regulated genes is associated with the extracellular matrix (ECM), proteolysis, and inflammatory response. We also used transcriptomic data to perform enrichment analysis of transcriptional factor binding sites in promoter sequences, which revealed activation of the atrophy-related transcription factors NF-κB, Stat3, AP-1, and FoxO. Furthermore, the integration of mRNA and microRNA expression profiles identified post-transcriptional regulation by microRNAs of genes involved in ECM organization, cell migration, transcription factors binding, ion transport, and the FoxO signaling pathway. Our integrative analysis of microRNA-mRNA co-profiles comprehensively characterized regulatory relationships of molecular pathways and revealed microRNAs targeting ECM-associated genes in cancer cachexia.
Skeletal myogenesis is a regulated process in which mononucleated cells, the myoblasts, undergo proliferation and differentiation. Upon differentiation, the cells align with each other, and subsequently fuse to form terminally differentiated multinucleated myotubes. Previous reports have identified the protein osteoglycin (Ogn) as an important component of the skeletal muscle secretome, which is expressed differentially during muscle development. However, the posttranscriptional regulation of Ogn by microRNAs during myogenesis is unknown. Bioinformatic analysis showed that miR-155 potentially targeted the Ogn transcript at the 3´-untranslated region (3´ UTR). In this study, we tested the hypothesis that miR-155 inhibits the expression of the Ogn to regulate skeletal myogenesis. C2C12 myoblast cells were cultured and miR-155 overexpression or Ogn knockdown was induced by transfection with miR-155 mimic, siRNA-Ogn, and negative controls with lipofectamine for 15 hours. Near confluence (80–90%), myoblasts were induced to differentiate myotubes in a differentiation medium. Luciferase assay was used to confirm the interaction between miR-155 and Ogn 3’UTR. RT-qPCR and Western blot analyses were used to confirm that the differential expression of miR-155 correlates with the differential expression of myogenic molecular markers (Myh2, MyoD, and MyoG) and inhibits Ogn protein and gene expression in myoblasts and myotubes. Myoblast migration and proliferation were assessed using Wound Healing and MTT assays. Our results show that miR-155 interacts with the 3’UTR Ogn region and decrease the levels of Ogn in myotubes. The overexpression of miR-155 increased MyoG expression, decreased myoblasts wound closure rate, and decreased Myh2 expression in myotubes. Moreover, Ogn knockdown reduced the expression levels of MyoD, MyoG, and Myh2 in myotubes. These results reveal a novel pathway in which miR-155 inhibits Ogn expression to regulate proliferation and differentiation of C2C12 myoblast cells.
Cachexia is a complex metabolic syndrome characterized by loss of skeletal muscle, leading to a significant weight loss that impacts patient morbidity and mortality. Given the complexity of gene regulatory networks that control gene expression, our objective was to perform an integrative mRNA and miRNA profiling to identify genetic programs that capture essential mechanistic details that promote muscle atrophy in cancer cachexia. Here, we used RNA sequencing to analyze miRNAs and mRNAs expression profiles in tibialis anterior (TA) muscles of the Lewis lung carcinoma model of cancer cachexia. In addition, we compared these findings with RNA-Seq data from C2C12 myotubes treated in vitro with the cachectic factors tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). Extracellular matrix (ECM) alterations were validated by picrosirius staining, western blot, and fractal dimension analyses. We found 1,008 mRNAs and 18 miRNAs differentially expressed in cachectic mice. This set of genes was associated with the ECM, proteolysis, and inflammatory response. Enrichment analysis of transcriptional factor binding sites revealed activation of the atrophy-related transcriptional factors: NF-κB, Stat3, AP-1, and FoxO. Furthermore, the integration of mRNA and miRNA expression profiles identified posttranscriptional regulation by miRNAs of genes involved in ECM organization, cell migration, transcription factors binding, ion transport, and FoxO signaling pathway. C2C12 myotubes treated with TNF-α and IFN-γ similarly down-regulate subsets of ECM genes, including collagens. Our integrative analysis of miRNA-mRNA co-profiles comprehensive characterized regulatory relationships of molecular pathways and revealed miRNAs targeting ECM-associated genes in cancer cachexia. We also confirmed in C2C12 myotubes that changes in ECM-associated genes are dependent on inflammatory signaling of the cytokines TNF-α and IFN-γ.
Low-level laser irradiation (LLLI) has been used as a non-invasive method to improve muscular regeneration capability. However, the molecular mechanisms by which LLLI exerts these effects remain largely unknown. Here, we described global gene expression profiling analysis in C2C12 myoblasts after LLLI that identified 514 differentially expressed genes (DEG). Gene ontology and pathway analysis of the DEG revealed transcripts among categories related to cell cycle, ribosome biogenesis, response to stress, cell migration, and cell proliferation. We further intersected the DEG in C2C12 myoblasts after LLLI with publicly available transcriptomes data from myogenic differentiation studies (myoblasts vs myotube) to identify transcripts with potential effects on myogenesis. This analysis revealed 42 DEG between myoblasts and myotube that intersect with altered genes in myoblasts after LLLI. Next, we performed a hierarchical cluster analysis with this set of shared transcripts that showed that LLLI myoblasts have a myotube-like profile, clustering away from the myoblast profile. The myotube-like transcriptional profile of LLLI myoblasts was further confirmed globally considering all the transcripts detected in C2C12 myoblasts after LLLI, by bi-dimensional clustering with myotubes transcriptional profiles, and by the comparison with 154 gene sets derived from previous published in vitro omics data. In conclusion, we demonstrate for the first time that LLLI regulates a set of mRNAs that control myoblast proliferation and differentiation into myotubes. Importantly, this set of mRNAs revealed a myotube-like transcriptional profile in LLLI myoblasts and provide new insights to the understanding of the molecular mechanisms underlying the effects of LLLI on skeletal muscle cells.
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that could be associated with the induction of endothelial cell proliferation and metastasis. In this study, we evaluated VEGF gene and protein expression in canine mammary tumors (CMT), including metastatic carcinomas, to determine if there is an influence of this marker in the malignant processes and aggressiveness of CMT. We also compared VEGF protein levels with clinicopathological features. The VEGF gene and protein expression levels were evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples, benign mammary tumors, nonmetastatic mammary carcinomas, and metastatic mammary carcinomas. High VEGF gene and protein levels were associated with malignant tumors compared with normal mammary glands (p = 0.0089 and p < 0.0001, respectively). Benign tumors showed an increased VEGF protein expression compared with normal samples (p = 0.0467). No significant differences in VEGF gene or protein levels were detected between benign and malignant tumors or between nonmetastatic and metastatic carcinomas, suggesting an absence in the correlation of VEGF with malignant processes and aggressiveness of CMT. No correlation of VEGF expression with clinical and histopathological parameters was observed, suggesting that VEGF could be important in the beginning of the mammary gland carcinogenic process and could be related to survival time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.