This paper describes the role of fabric anisotropy during clayey soil deformation. A set of triaxial tests was performed on vertical and horizontal specimens of undisturbed smectite lake sediments from Jurica, Queretaro in Mexico. The results allowed to analyze the influence of bedding and discontinuities on the mechanical behavior of Jurica clays after failure. Tests with applied low strain rates allowed pore pressure equalization within specimens with different gravimetric water content and degree of saturation. Shear failure results of undrained tests showed that deformation distributes differently in both horizontal and vertical directions and that stress may be dissipated by pore collapses, fractures and particle deformation. The experimental evidence suggests that microfabric is a relevant variable in the overall mechanical response of clayey sediments that depends on the natural fabric (bedding and discontinuities), mineralogy, and water content. A detailed analysis of Young´s Moduli (E) showed the high variability of this parameter from 108 to 409 kg/cm2 (calculated at 30% of σdmax) and its dependence on the orientation of the specimen and the water content. In addition, p’-q’ graphs illustrate the relevance of considering mechanical anisotropy in clays and provide further insights to understand the role of smectites in progressive shear deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.