In order to predict the wrinkling of sheet metal under the influence of fluid pressure and temperature during warm/hot hydroforming, a numerical simulation model for sheet wrinkling prediction was established, taking into account through-thickness normal stress induced by fluid pressure. From simulations using linear and quadratic elements, respectively, it was found that the latter gave results that were much closer to experimental data. A novel experimental method based on an improved Yoshida Buckling Test (YBT) was proposed for testing the wrinkling properties of sheets under the through-thickness normal stress. A wrinkling coefficient suitable for predicting wrinkling was also presented. Based on the numerical simulations, an experimental validation of wrinkling performance was conducted. Ridge-height curves measured along the main diagonal tensile direction of the sheet were presented and showed that the wrinkling prediction criterion provided good discrimination. Furthermore, the wrinkling properties of several different materials were simulated to evaluate the accuracy of the prediction method, and the results revealed that the improved YBT gave good predictions for wrinkling in the conventional sheet metal forming process, while the prediction results for wrinkling in warm/hot sheet hydroforming were also accurate with the fluid pressure of zero.
In order to investigate the formability of the granular medium forming (GMF), based on the Mohr-Coulomb constitutive model with the tri-axial compression test of granular medium and the true stress-strain curves of TA1 titanium alloy from uniaxial tensile tests, the numerical simulation of TA1 titanium alloy sheet deep drawing with finite element method was performed, and the deep drawing tests were also carried out. Simulation analysis and test results show that the GMF process is suitable for titanium alloy sheets, and can effectively improve the uniformity of the wall thickness of the formed parts, reduce the tendency of wrinkles and improve the forming quality.
To investigate and verify the degree to which the forming properties of low plasticity materials are improved at room temperature using the granular medium forming (GMF) process at 500 °C, a coupled Eulerian–Lagrangian unit calculation model was established and a special mold was designed to conduct a GMF experiment for titanium alloy sheets under different-shaped pressing blocks. Then, using a three-coordinate measuring machine, the sizes of the outer contours of the parts formed at room temperature were measured, and the results showed that the bottom of the parts maintained a smooth surface during the drawing process. As the drawing height increased, the radius of curvature of the cambered surface gradually decreased. By measuring the wall thickness of the parts at different positions from the central axis using a caliper, the wall thickness distribution curves of these parts were obtained, which showed that the deformations of the bottom of the formed parts were uniform and the uniformity of the wall thickness distribution was good. By comparing the GMF experimental data at 500 °C with traditional deep drawing experimental data, it was found that the GMF technology could improve the forming properties of low plastic materials such as titanium alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.