The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.
An overview of the phylogeny of the Agaricales is presented based on a multilocus analysis of a six-gene region supermatrix. Bayesian analyses of 5611 nucleotide characters of rpb1, rpb1-intron 2, rpb2 and 18S, 25S, and 5.8S ribosomal RNA genes recovered six major clades, which are recognized informally and labeled the Agaricoid, Tricholomatoid, Marasmioid, Pluteoid, Hygrophoroid and Plicaturopsidoid clades. Each clade is discussed in terms of key morphological and ecological traits. At least 11 origins of the ectomycorrhizal habit appear to have evolved in the Agaricales, with possibly as many as nine origins in the Agaricoid plus Tricholomatoid clade alone. A family-based phylogenetic classification is sketched for the Agaricales, in which 30 families, four unplaced tribes and two informally named clades are recognized.
An overview of the phylogeny of the Agaricales is presented based on a multilocus analysis of a six-gene region supermatrix. Bayesian analyses of 5611 nucleotide characters of rpb1, rpb1-intron 2, rpb2 and 18S, 25S, and 5.8S ribosomal RNA genes recovered six major clades, which are recognized informally and labeled the Agaricoid, Tricholomatoid, Marasmioid, Pluteoid, Hygrophoroid and Plicaturopsidoid clades. Each clade is discussed in terms of key morphological and ecological traits. At least 11 origins of the ectomycorrhizal habit appear to have evolved in the Agaricales, with possibly as many as nine origins in the Agaricoid plus Tricholomatoid clade alone. A family-based phylogenetic classification is sketched for the Agaricales, in which 30 families, four unplaced tribes and two informally named clades are recognized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.