Presented is a lithium-ion battery degradation model, based on irreversible thermodynamics, which was experimentally verified, using commonly measured operational parameters. The methodology, applicable to all lithium-ion batteries of all chemistries and composition, combined fundamental thermodynamic principles, with the Degradation-Entropy Generation theorem, to relate instantaneous capacity fade (loss of useful charge-holding capacity) in the lithium-ion battery, to the irreversible entropy generated via the underlying dissipative physical processes responsible for battery degradation. Equations relating capacity fade-aging-to battery cycling were also formulated and verified. To show the robustness of the approach, nonlinear data from abusive and inconsistent battery cycling was measured and used to verify formulations. A near 100% agreement between the thermodynamic battery model and measurements was achieved. The model also gave rise to new material and design parameters to characterize all lithium-ion batteries.
Formulated is a new instantaneous fatigue model and predictor based on ab initio irreversible thermodynamics. The method combines the first and second laws of thermodynamics with the Helmholtz free energy, then applies the result to the degradation-entropy generation theorem to relate a desired fatigue measure—stress, strain, cycles or time to failure—to the loads, materials and environmental conditions (including temperature and heat) via the irreversible entropies generated by the dissipative processes that degrade the fatigued material. The formulations are then verified with fatigue data from the literature, for a steel shaft under bending and torsion. A near 100% agreement between the fatigue model and measurements is achieved. The model also introduces new material and design parameters to characterize fatigue.
This article details a lead-acid battery degradation model based on irreversible thermodynamics, which is then verified experimentally using commonly measured operational parameters. The model combines thermodynamic first principles with the Degradation-Entropy Generation theorem, to relate instantaneous and cyclic capacity fade (loss of useful charge-holding capacity) in the lead-acid battery to the entropy generated via the underlying dissipative physical processes responsible for battery degradation. Equations relating capacity fade to battery cycling are also formulated and verified. To show robustness of the approach, nonlinear data from uncontrolled and severely abusive battery cycling-including overdischarge-was measured and used to verify formulations. A near 100% agreement between the thermodynamic battery model and measurements is achieved. The model also gives rise to new material and design parameters to characterize all lead-acid batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.