This chapter presents a comparative development and thorough assessment of vector control methodologies for a promising brushless doubly-fed reluctance generator (BDFRG) technology for adjustable speed wind turbines. The BDFRG has been receiving increasing attention in research and industrial communities due to the low operation & maintenance costs afforded by the partiallyrated power electronics and the high reliability of brushless construction, while offering competitive performance to its commercially popular and well-known slip-ring counterpart, the doubly-fed induction generator (DFIG). The two robust, machine parameter independent control schemes, one with flux (field) vector orientation (FOC) and the other voltage vector-oriented (VOC), have been built and their response examined by realistic simulation studies on a custom-designed BDFRG fed from a conventional 'back-to-back' IGBT converter. The high quality of the simulation results has been experimentally validated on a laboratory BDFRG test facility under VOC conditions as a preferred control option at large-scale wind power levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.