Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.
Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.