Three novel missense mutations of SQSTM1 were identified in familial PDB, all affecting the UBA domain. Functional and structural analysis showed that disease severity was related to the type of mutation but was unrelated to the polyubiquitin-binding properties of the mutant UBA domain peptides.Introduction: Mutations affecting the ubiquitin-associated (UBA) domain of Sequestosome 1 (SQSTM1) gene have recently been identified as a common cause of familial Paget's disease of bone (PDB), but the mechanisms responsible are unclear. We identified three novel SQSTM1 mutations in PDB, conducted functional and structural analyses of all PDB-causing mutations, and studied the relationship between genotype and phenotype. Materials and Methods: Mutation screening of the SQSTM1 gene was conducted in 70 kindreds with familial PDB. We characterized the effect of the mutations on structure of the UBA domain by protein NMR, studied the effects of the mutant UBA domains on ubiquitin binding, and looked at genotype-phenotype correlations. Results and Conclusions: Three novel missense mutations affecting the SQSTM1 UBA domain were identified, including a missense mutation at codon 411 (G411S), a missense mutation at codon 404 (M404V), and a missense mutation at codon 425 (G425R). We also identified a deletion leading to a premature stop codon at 394 (L394X). None of the mutations were found in controls. Structural analysis showed that M404V and G425R involved residues on the hydrophobic surface patch implicated in ubiquitin binding, and consistent with this, the G425R and M404V mutants abolished the ability of mutant UBA domains to bind polyubiquitin chains. In contrast, the G411S and P392L mutants bound polyubiquitin chains normally. Genotype-phenotype analysis showed that patients with truncating mutations had more extensive PDB than those with missense mutations (bones involved ϭ 6.05 Ϯ 2.71 versus 3.45 Ϯ 2.46; p Ͻ 0.0001). This work confirms the importance of UBA domain mutations of SQSTM1 as a cause of PDB but shows that there is no correlation between the ubiquitin-binding properties of the different mutant UBA domains and disease occurrence or extent. This indicates that the mechanism of action most probably involves an interaction between SQSTM1 and a hitherto unidentified protein that modulates bone turnover.
This study estimated changes in the age-and sex-specific prevalence of Paget's disease of bone in six European towns over a 20-year period. Declines in prevalence were observed in this disorder, occurring among both men and women.Introduction: To estimate secular changes in the age-and sex-specific prevalence of Paget's disease of bone in Europe, we conducted a second radiographic survey using identical sampling and methods in six European towns where a baseline study was performed in [1978][1979]. In addition to these towns, the survey was carried out in two Hungarian centers not included in the initial study. Materials and Methods: In each center, a sample of abdominal radiographs of people Ն55 years of age was taken from stored films within the radiology department of the principal general hospital. Radiographs showing the entire pelvis, sacrum, femoral heads, and lumbar vertebrae were studied for the period of 2000-2001. The films were evaluated by a trained observer and a consultant radiologist. Results: A total of 6935 radiographs (3512 women and 3423 men) were assessed in the eight towns. The overall age-and sex-standardized prevalence rate of Paget's disease was 0.3% with a male/female ratio of 1.5. Prevalence increased with age among men and women rising to 0.8% of men and 0.9% of women Ն85 years of age. The differences in prevalence rate among the European centers were relatively small, especially in women. There was a decline in rates between 1978/79 and 2000/01. Conclusions: These European data confirm the decrease in frequency of Paget's disease observed in Britain. These declines favor an environmental contribution to the causation of the disease that requires further research.
A Drosophila P-element derivative (pUChsneo) integrated into the telomeric region of the left arm of the second chromosome of Anopheles gambiae was used to clone the proximally flanking An. gambiae sequences. Molecular analyses revealed that the pUChsneo construct was partially duplicated and had integrated into a subterminal minisatellite. This satellite has a repeat unit of 820 bp and is located exclusively at the tip of 2L. No sequence similarity to subterminal minisatellites from other dipterans was detected, but some structural features such as tandem subrepeats are shared. The end of the chromosome was mapped with respect to restriction sites in pUChsneo at approximately generation 100 after the integration event. Considering inevitable terminal nucleotide loss due to incomplete DNA replication, we conclude that the chromosome end must have undergone a dramatic elongation process since it was mapped in generation 23.
Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wild-type strain of D. melanogaster, including a minisatellite with a 457bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.