Key points Increased activation of the renin‐angiotensin‐aldosterone system (RAAS) and elevated growth factor production are of crucial importance in the development of renal fibrosis leading to diabetic kidney disease.The aim of this study was to provide evidence for the antifibrotic potential of RAAS inhibitor (RAASi) treatment and to explore the exact mechanism of this protective effect.We found that RAASi ameliorate diabetes‐induced renal interstitial fibrosis and decrease profibrotic growth factor production.RAASi prevents fibrosis by acting directly on proximal tubular cells, and inhibits hyperglycaemia‐induced growth factor production and thereby fibroblast activation.These results suggest a novel therapeutic indication and potential of RAASi in the treatment of renal fibrosis. AbstractIn diabetic kidney disease (DKD) increased activation of renin‐angiotensin‐aldosterone system (RAAS) contributes to renal fibrosis. Although RAAS inhibitors (RAASi) are the gold standard therapy in DKD, the mechanism of their antifibrotic effect is not yet clarified. Here we tested the antifibrotic and renoprotective action of RAASi in a rat model of streptozotocin‐induced DKD. In vitro studies on proximal tubular cells and renal fibroblasts were also performed to further clarify the signal transduction pathways that are directly altered by hyperglycaemia. After 5 weeks of diabetes, male Wistar rats were treated for two more weeks per os with the RAASi ramipril, losartan, spironolactone or eplerenone. Proximal tubular cells were cultured in normal or high glucose (HG) medium and treated with RAASi. Platelet‐derived growth factor (PDGF) or connective tissue growth factor (CTGF/CCN2)‐induced renal fibroblasts were also treated with various RAASi. In diabetic rats, reduced renal function and interstitial fibrosis were ameliorated and elevated renal profibrotic factors (TGFβ1, PDGF, CTGF/CCN2, MMP2, TIMP1) and alpha‐smooth muscle actin (αSMA) levels were decreased by RAASi. HG increased growth factor production of HK‐2 cells, which in turn induced activation and αSMA production of fibroblasts. RAASi decreased tubular PDGF and CTGF expression and reduced production of extracellular matrix (ECM) components in fibroblasts. In proximal tubular cells, hyperglycaemia‐induced growth factor production increased renal fibroblast transformation, contributing to the development of fibrosis. RAASi, even in non‐antihypertensive doses, decreased the production of profibrotic factors and directly prevented fibroblast activation. All these findings suggest a novel therapeutic role for RAASi in the treatment of renal fibrosis.
Phagocytosis of naturally dying cells usually blocks inflammatory reactions in host cells. We have recently observed that clearance of cells dying through autophagy leads to a pro-inflammatory response in human macrophages. Investigating this response further, we found that during engulfment of MCF-7 or 293T cells undergoing autophagic death, but not apoptotic or anoikic ones, caspase-1 was activated and IL-1β was processed, then secreted in a MyD88-independent manner. Autophagic dying cells were capable of preventing some LPS-induced pro-inflammatory responses, such as TNFα, IL-6 and IL-8 induction, but synergized with LPS for IL-1β production. Caspase-1 inhibition prevented macrophage IL-1β release triggered by the dying cells and also other pro-inflammatory cytokines which were not formed in the presence of IL-1 receptor antagonist anakinra either. IL-1β secretion was also observed using calreticulin knock down or necrostatin treated autophagic MCF-7 cells and it required phagocytosis of the dying cells which led to ATP secretion from macrophages. Blocking K (+) efflux during phagocytosis, the presence of apyrase, adding an antagonist of the P2X7 receptor or silencing the NOD-like receptor protein NALP3 inhibited IL-1β secretion. These data suggest that during phagocytosis of autophagic dying cells ATP, acting through its receptor, initiates K (+) efflux, inflammasome activation and secretion of IL-1β, which initiates further pro-inflammatory events. Thus, autophagic death of malignant cells and their clearance may lead to immunogenic response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.