Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern which affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines is limited. A truly interdisciplinary approach, that would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods and approaches to help solve MIC related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field.
Here we report the results of our decades-long study on epiphytic communities from two tributary systems of the Szigetköz section of the Danube River. The main goal of the investigation was to detect changes in the epiphytic communities at structural (core species, changes in the relative abundance of common species) and functional (trait changes) levels as a result of the most important anthropogenic effects on Szigetköz, i.e., hydro-morphological modifications. We also examined the impact of rehabilitation on the tributary systems in terms of ecological potential. We discovered that mainly motile diatom species characterized the epiphyton due to reduced water volume were introduced into the tributary system after the diversion of the Danube. The ecosystem stabilized in the rehabilitated section, while the non-rehabilitated section showed a worsening tendency, mainly in the parapotamic branches. Our long-term data sets may provide a good basis for comparisons of different aquatic ecosystems, to define changes in the abundance of core species and in the structure of community in response to different anthropogenic pressures. It is fundamental to determine adaptive traits in assessing the impact of global warming stressors on biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.