Human deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase), essential for DNA integrity, acts as a survival factor for tumor cells and is a target for cancer chemotherapy. Here we report that the Staphylococcal repressor protein StlSaPIBov1 (Stl) forms strong complex with human dUTPase. Functional analysis reveals that this interaction results in significant reduction of both dUTPase enzymatic activity and DNA binding capability of Stl. We conducted structural studies to understand the mechanism of this mutual inhibition. Small-angle X-ray scattering (SAXS) complemented with hydrogen-deuterium exchange mass spectrometry (HDX-MS) data allowed us to obtain 3D structural models comprising a trimeric dUTPase complexed with separate Stl monomers. These models thus reveal that upon dUTPase-Stl complex formation the functional homodimer of Stl repressor dissociates, which abolishes the DNA binding ability of the protein. Active site forming dUTPase segments were directly identified to be involved in the dUTPase-Stl interaction by HDX-MS, explaining the loss of dUTPase activity upon complexation. Our results provide key novel structural insights that pave the way for further applications of the first potent proteinaceous inhibitor of human dUTPase.
The dUTPase enzyme family plays an essential role in maintaining the genome integrity and are represented by two distinct classes of proteins; the β-pleated homotrimeric and the all-α homodimeric dUTPases. Representatives of both trimeric and dimeric dUTPases are encoded by Staphylococcus aureus phage genomes and have been shown to interact with the Stl repressor protein of S. aureus pathogenicity island SaPIbov1. In the present work we set out to characterize the interactions between these proteins based on a range of biochemical and biophysical methods and shed light on the binding mechanism of the dimeric φNM1 phage dUTPase and Stl. Using hydrogen deuterium exchange mass spectrometry, we also characterize the protein regions involved in the dUTPase:Stl interactions. Based on these results we provide reasonable explanation for the enzyme inhibitory effect of Stl observed in both types of complexes. Our experiments reveal that Stl employs different peptide segments and stoichiometry for the two different phage dUTPases which allows us to propose a functional plasticity of Stl. The malleable character of Stl serves as a basis for the inhibition of both dimeric and trimeric dUTPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.