Implicit skill learning is an unconscious way of learning which underlies not only motor but also cognitive and social skills. This form of learning is based on both motor and perceptual information. Although many studies have investigated the perceptual and motor components of "online" skill learning, the effect of consolidation on perceptual and motor characteristics of skill learning has not been studied to our knowledge. In our research we used a sequence learning task to determine if consolidation had the same or different effect on the perceptual and the motor components of skill acquisition. We introduced a 12-h (including or not including sleep) and a 24-h (diurnal control) delay between the learning and the testing phase with AM-PM, PM-AM, AM-AM and PM-PM groups, in order to examine whether the offline period had differential effects on perceptual and motor learning. Although both perceptual and motor learning were significant in the testing phase, results showed that motor knowledge transfers more effectively than perceptual knowledge during the offline period, irrespective of whether sleep occurred or not and whether there was a 12- or 24-h delay period between the learning and the testing phase. These results have important implications for the debate concerning perceptual/motor learning and the role of sleep in skill acquisition.
In the last few years, the existence of a pure number sense has been challenged. Recent studies suggest that numerosity processing is influenced not only by the number of elements in a display but also by continuous magnitudes, such as the size of the elements. The aim of our study was to replicate and extend the findings by Gebuis and Reynvoet, who systematically manipulated different continuous magnitudes either congruently or incongruently with discrete numerosity. We were particularly interested in finding the same pattern of congruency effects and assess its stability and robustness as this pattern indicates a complex influence of continuous magnitudes on numerosity judgements. We did so by showing stimuli of different conditions either in separate blocks or mixed together while participants solved a dot comparison task. Our results are in line with the notion that discrete number and continuous magnitudes are integrated in numerosity judgements by means of a weighing process. Moreover, our findings suggest that this integration is modified by the mode of presentation (blocked vs. mixed).
The interaction of physical and numerical size has been investigated and repeatedly demonstrated in the numerical Stroop task, in which participants compare digits of different physical sizes. It is, however, not entirely clear yet what psychological processes contribute to this interaction. The aim of the present study is to investigate the role of inhibition in the interaction of physical and numerical size, by introducing a novel paradigm that is suitable to elicit inhibition-related event-related potential components. To this end, we combined the go/nogo paradigm with the numerical Stroop task while measuring EEG and reaction times. Participants were presented with Arabic number pairs and had to press a button if the number on one side was numerically larger and they had to refrain from responding if the number on the other side was numerically larger. The physical size of the number pairs was also manipulated, in order to create congruent, neutral, and incongruent trials. Behavioural results confirmed the well-established numerical distance and numerical Stroop effects. Analysis of electrophysiological data revealed the classical go/nogo electrophysiological effects with numerical stimuli, and showed that peak amplitudes were larger for nogo than for go trials on the N2, as well as on the P3 component, on frontal and midline electrodes. When analysing the congruency effects, the peak amplitude of N2 was larger in incongruent trials than in neutral and congruent trials, while there was no evidence of a congruency effect on the P3 component peaks. Further analysis of the electrophysiological data revealed an additional facilitatory effect in the go trials, as well as an additional interference effect in the nogo trials. Taken together, it seems that interference effects are probably resolved by inhibitory processes and that facilitatory effects are affected by different cognitive control processes required by go versus nogo trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.