Organic solar cells, both in the hybrid dye sensitized technology and in the full organic polymeric technology, are a promising alternative that could supply solar electricity at a cost much lower than other more conventional inorganic photovoltaic technologies. This paper presents a life cycle analysis of the laboratory production of a typical bulk heterojunction organic solar cell and compares this result with those obtained for the industrial production of other photovoltaic technologies. Also a detailed material inventory from raw materials to final photovoltaic module is presented, allowing us to identify potential bottlenecks in a future supply chain for a large industrial output. Even at this initial stage of laboratory production, the energy payback time and CO 2 emission factor for the organic photovoltaic technology is of the same order of other inorganic photovoltaic technologies, demonstrating that there is plenty of room for improvement if the fabrication procedure is optimized and scaled up to an industrial process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.