Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 10 6 nucleotides (range, 0-0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/ mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways. IntroductionSmall intestine neuroendocrine neoplasms (SI-NENs) are the most common malignancy of the small bowel, represent the largest group of NENs by organ site, and are studied in clinical treatment trials targeting PI3K/Akt/mTOR signaling. Whether this or other canonical cancer pathways is recurrently mutated, however, is uncertain, because a genome-wide, unbiased sequence analysis of cancer genes has not been performed to date in SI-NENs.Massively parallel, or "nextgen," DNA sequencing is currently advancing research in other human malignancies by facilitating the collection of comprehensive, genome-wide, unbiased datasets providing a common data framework for comparing results across different tumor types and gene sets. It provides the most comprehensive technology to date to explore the potential of genomics for individualizing cancer treatment within a tumor type. To unlock and explore the potential of the technology for translational research in SI-NEN, we sequenced 48 such tumors.
Purpose: Gemcitabine is a nucleoside analogue with activity against solid tumors. Gemcitabine metabolic inactivation is catalyzed by cytidine deaminase (CDA) or, after phosphorylation, by deoxycytidylate deaminase (DCTD). We set out to study the pharmacogenomics of CDA and DCTD. Experimental Design:The genes encoding CDA and DCTD were resequenced using DNA from 60 African American and 60 Caucasian American subjects. Expression constructs were created for nonsynonymous coding single nucleotide polymorphisms (cSNP) and reporter gene constructs were created for 5V -flanking region polymorphisms. Functional genomic studies were then conducted after the transfection of mammalian cells. Results: CDA resequencing revealed 17 polymorphisms, including one common nonsynonymous cSNP, 79 A>C (Lys27Gln). Recombinant Gln27 CDA had 66 F 5.1% (mean F SE) of the wild-type (WT) activity for gemcitabine but without a significant decrease in level of immunoreactive protein. The apparent K m (397 F 40 Amol/L) for the Gln27 allozyme was significantly higher than that for the WT (289 F 20 Amol/L; P < 0.025). CDA 5V-flanking region reporter gene studies showed significant differences among 5V -flanking region haplotypes in their ability to drive transcription. There were 29 SNPs in DCTD, including one nonsynonymous cSNP, 172 A>G (Asn58Asp), in Caucasian American DNA. Recombinant Asp58 DCTD had 11 F 1.4% of WT activity for gemcitabine monophosphate with a significantly elevated level of immunoreactive protein. No DCTD polymorphisms were observed in the initial 500 bp of the 5V -flanking region. Conclusions: These results suggest that pharmacogenomic variation in the deamination of gemcitabine and its monophosphate might contribute to variation in therapeutic response to this antineoplastic agent.
In early-stage TNBC, nodal involvement, TILs, and receipt of adjuvant chemotherapy were independently associated with IDFS and OS. In systemically untreated TNBC, TILs remained prognostic and the risk of recurrence or death was substantial, even for T1N0 disease.
Neuroendocrine (carcinoid) tumors (NETs) are endocrine neoplasms occurring most frequently in gastrointestinal and bronchopulmonary (BP) systems. The majority of patients present with advanced disease for which few treatment options exist. We assessed 104 NETs (74 cases) for biomarkers targeted by anticancer drugs under development for other forms of cancer. Activating mutations were assessed in epidermal growth factor receptor (EGFR), stem cell factor receptor (KIT ), and platelet-derived growth factor receptor alpha (PDGFRA), as well as non-response mutations in KRAS. Copy number of EGFR and HER-2/neu was quantified with fluorescence in situ hybridization. Immunohistochemical analyses were performed for EGFR, KIT, PDGFRA, somatostatin receptor subtypes 2A and 5 (SSTR5), vascular endothelial growth factor receptor 1, mammalian target of rapamycin (mTOR), insulin-like growth factor 1 receptor (IGF1R), heat shock protein 90 (Hsp90), and transforming growth factor-b receptor 1 (TGFBR1). NETs lacked HER2-overexpression predictive of anti-HER2 response and KIT and PDGFRA activating mutations indicative of imatinib sensitivity. High EGFR aneusomy (20% of all cases) and elevated EGFR copy number (39%) were found, but few KRAS mutations associated with non-response to anti-EGFR therapy (3%). Hsp90, TGFBR1, IGF1R, and SSTR5 exhibited highest levels of immunohistochemical staining in the largest percents of tumors. In subsequent in vitro studies, anticancer drug 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) (targeting Hsp90) inhibited proliferation of BP NET lines NCI-H727, NCI-H720, and NCI-H835 with IC 50 values of 70.4, 310, and 788 nM respectively; BMS-754807 (targeting IGF1R/IR) inhibited growth with IC 50 values of 428 nM, 2.8 mM, and 1 mM. At growth-inhibiting concentrations, 17-AAG (24 h) induced loss of EGFR and IGF1R in the IGF1R-expressing NCI-H727 line, and BMS-754807 (24 h) inhibited constitutive IGF1R autophosphorylation. Our results support further research into Hsp90, IGF1R, and EGFR as targets for developing new anticancer therapeutics for some NETs.
Metaplastic breast carcinoma, a rare tumor composed of adenocarcinomatous and nonglandular growth patterns, is characterized by a propensity for distant metastases and resistance to standard anticancer therapies. We sought confirmation that this tumor is a basal-like breast cancer, expressing epidermal growth factor receptor (EGFR) and stem cell factor receptor (KIT). EGFR activating mutations and high copy number (associated with response to tyrosine kinase inhibitor gefitinib) and KIT activating mutations (associated with imatinib sensitivity) were then investigated. Seventy-seven metaplastic cases were identified ; 38 with tumor blocks available underwent pathologic confirmation before EGFR and KIT immunohistochemical analyses. A tissue microarray of malignant glandular and metaplastic elements was constructed and analyzed immunohistochemically for cytokeratin 5/6, estrogen receptor, progesterone receptor, and p63, and by fluorescence in situ hybridization for EGFR and HER-2/neu. DNA isolated from individual elements was assessed for EGFR and KIT activating mutations. All assessable cases were negative for estrogen receptor, progesterone receptor, and (except one) HER2. The majority were positive for cytokeratin 5/6 (58%), p63 (59%), and EGFR overexpression (66%); 24% were KIT positive. No EGFR or KIT activating mutations were present; 26% of the primary metaplastic breast carcinomas were fluorescence in situ hybridization-positive, displaying high EGFR copy number secondary to aneusomy (22%) and amplification (4%). We report here that metaplastic breast carcinoma is a basal-like breast cancer lacking EGFR and KIT activating mutations but exhibiting high EGFR copy number (primarily via aneusomy), suggesting that EGFR tyrosine kinase inhibitors should be evaluated in this molecular subset of breast carcinomas. [Mol Cancer Ther 2008;7(4):944 -51]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.